Yeo Inah, Kim Doukyun, Han Il Ki, Song Jin Dong
Dielectrics and Advanced Matter Physics Research Center, Pusan National University, Busan, 46241, Korea.
Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea.
Sci Rep. 2019 Dec 6;9(1):18564. doi: 10.1038/s41598-019-55010-3.
Herein, we present the calculated strain-induced control of single GaAs/AlGaAs quantum dots (QDs) integrated into semiconductor micropillar cavities. We show precise energy control of individual single GaAs QD excitons under multi-modal stress fields of tailored micropillar optomechanical resonators. Further, using a three-dimensional envelope-function model, we evaluated the quantum mechanical correction in the QD band structures depending on their geometrical shape asymmetries and, more interestingly, on the practical degree of Al interdiffusion. Our theoretical calculations provide the practical quantum error margins, obtained by evaluating Al-interdiffused QDs that were engineered through a front-edge droplet epitaxy technique, for tuning engineered QD single-photon sources, facilitating a scalable on-chip integration of QD entangled photons.
在此,我们展示了对集成到半导体微柱腔中的单个 GaAs/AlGaAs 量子点(QD)的应变诱导控制。我们展示了在定制的微柱光机械谐振器的多模态应力场下,对单个 GaAs 量子点激子的精确能量控制。此外,使用三维包络函数模型,我们评估了量子点能带结构中的量子力学修正,这取决于它们的几何形状不对称性,更有趣的是,还取决于 Al 互扩散的实际程度。我们的理论计算提供了实际的量子误差容限,通过评估采用前沿液滴外延技术设计的 Al 互扩散量子点获得,用于调谐设计的量子点单光子源,促进量子点纠缠光子的可扩展片上集成。