Geometric Data Vision Laboratory, Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, 32001, Taiwan.
Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
Sci Rep. 2023 Aug 21;13(1):13582. doi: 10.1038/s41598-023-40848-5.
We demonstrate that isomorphically mapping gray-level medical image matrices onto energy spaces underlying the framework of fast data density functional transform (fDDFT) can achieve the unsupervised recognition of lesion morphology. By introducing the architecture of geometric deep learning and metrics of graph neural networks, gridized density functionals of the fDDFT establish an unsupervised feature-aware mechanism with global convolutional kernels to extract the most likely lesion boundaries and produce lesion segmentation. An AutoEncoder-assisted module reduces the computational complexity from [Formula: see text] to [Formula: see text], thus efficiently speeding up global convolutional operations. We validate their performance utilizing various open-access datasets and discuss limitations. The inference time of each object in large three-dimensional datasets is 1.76 s on average. The proposed gridized density functionals have activation capability synergized with gradient ascent operations, hence can be modularized and embedded in pipelines of modern deep neural networks. Algorithms of geometric stability and similarity convergence also raise the accuracy of unsupervised recognition and segmentation of lesion images. Their performance achieves the standard requirement for conventional deep neural networks; the median dice score is higher than 0.75. The experiment shows that the synergy of fDDFT and a naïve neural network improves the training and inference time by 58% and 51%, respectively, and the dice score raises to 0.9415. This advantage facilitates fast computational modeling in interdisciplinary applications and clinical investigation.
我们证明,将灰度医学图像矩阵同胚映射到快速数据密度泛函变换(fDDFT)基础的能量空间中,可以实现病变形态的无监督识别。通过引入几何深度学习的架构和图神经网络的度量标准,fDDFT 的网格化密度函数建立了一种具有全局卷积核的无监督特征感知机制,以提取最可能的病变边界并生成病变分割。一个 AutoEncoder 辅助模块将计算复杂度从 [公式:见文本] 降低到 [公式:见文本],从而有效地加快了全局卷积操作的速度。我们利用各种公开数据集验证了它们的性能,并讨论了局限性。在大型三维数据集上,每个对象的推断时间平均为 1.76 秒。所提出的网格化密度函数具有与梯度上升操作协同的激活能力,因此可以模块化并嵌入现代深度神经网络的流水线中。几何稳定性和相似性收敛算法也提高了病变图像的无监督识别和分割的准确性。它们的性能达到了传统深度神经网络的标准要求;中位数骰子分数高于 0.75。实验表明,fDDFT 和朴素神经网络的协同作用分别将训练和推断时间提高了 58%和 51%,骰子分数提高到 0.9415。这一优势有利于在交叉学科应用和临床研究中进行快速计算建模。