Suppr超能文献

计算风险决策标志物以识别现实临床环境中阿片类药物使用易损期的时间窗。

Computational Markers of Risky Decision-making for Identification of Temporal Windows of Vulnerability to Opioid Use in a Real-world Clinical Setting.

机构信息

Brain Health Institute, Department of Psychiatry, University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, New Jersey.

Neuroscience Institute, New York University School of Medicine, New York.

出版信息

JAMA Psychiatry. 2020 Apr 1;77(4):368-377. doi: 10.1001/jamapsychiatry.2019.4013.

Abstract

IMPORTANCE

Opioid addiction is a major public health problem. Despite availability of evidence-based treatments, relapse and dropout are common outcomes. Efforts aimed at identifying reuse risk and gaining more precise understanding of the mechanisms conferring reuse vulnerability are needed.

OBJECTIVE

To use tools from computational psychiatry and decision neuroscience to identify changes in decision-making processes preceding opioid reuse.

DESIGN, SETTING, AND PARTICIPANTS: A cohort of individuals with opioid use disorder were studied longitudinally at a community-based treatment setting for up to 7 months (1-15 sessions per person). At each session, patients completed a risky decision-making task amenable to computational modeling and standard clinical assessments. Time-lagged mixed-effects logistic regression analyses were used to assess the likelihood of opioid use between sessions (t to t + 1; within the subsequent 1-4 weeks) from data acquired at the current session (t). A cohort of control participants completed similar procedures (1-5 sessions per person), serving both as a baseline comparison group and an independent sample in which to assess measurement test-retest reliability. Data were analyzed between January 1, 2018, and September 5, 2019.

MAIN OUTCOMES AND MEASURES

Two individual model-based behavioral markers were derived from the task completed at each session, capturing a participant's current tolerance of known risks and ambiguity (partially unknown risks). Current anxiety, craving, withdrawal, and nonadherence were assessed via interview and clinic records. Opioid use was ascertained from random urine toxicology tests and self-reports.

RESULTS

Seventy patients (mean [SE] age, 44.7 [1.3] years; 12 women and 58 men [82.9% male]) and 55 control participants (mean [SE] age, 42.4 [1.5] years; 13 women and 42 men [76.4% male]) were included. Of the 552 sessions completed with patients (mean [SE], 7.89 [0.59] sessions per person), 252 (45.7%) directly preceded opioid use events (mean [SE], 3.60 [0.44] sessions per person). From the task parameters, only ambiguity tolerance was significantly associated with increased odds of prospective opioid use (adjusted odds ratio, 1.37 [95% CI, 1.07-1.76]), indicating patients were more tolerant specifically of ambiguous risks prior to these use events. The association of ambiguity tolerance with prospective use was independent of established clinical factors (adjusted odds ratio, 1.29 [95% CI, 1.01-1.65]; P = .04), such that a model combining these factors explained more variance in reuse risk. No significant differences in ambiguity tolerance were observed between patients and control participants, who completed 197 sessions (mean [SE], 3.58 [0.21] sessions per person); however, patients were more tolerant of known risks (B = 0.56 [95% CI, 0.05-1.07]).

CONCLUSIONS AND RELEVANCE

Computational approaches can provide mechanistic insights about the cognitive factors underlying opioid reuse vulnerability and may hold promise for clinical use.

摘要

重要性

阿片类药物成瘾是一个主要的公共卫生问题。尽管有循证治疗方法,但复发和辍学是常见的结果。需要努力确定再使用的风险,并更准确地了解导致再使用易感性的机制。

目的

使用计算精神病学和决策神经科学的工具来确定阿片类药物再使用之前决策过程的变化。

设计、设置和参与者:在一个以社区为基础的治疗环境中,对一组患有阿片类药物使用障碍的个体进行了纵向研究,最长可达 7 个月(每人 1-15 次)。在每次会议上,患者都完成了一项适合计算建模和标准临床评估的风险决策任务。使用时间滞后的混合效应逻辑回归分析来评估在当前会议(t)期间获得的数据后,会话之间(t 到 t+1;在随后的 1-4 周内)发生阿片类药物使用的可能性。一组对照参与者完成了类似的程序(每人 1-5 次),既是基线比较组,也是评估测量测试重测可靠性的独立样本。数据于 2018 年 1 月 1 日至 2019 年 9 月 5 日进行分析。

主要结果和措施

从每次会议完成的任务中得出了两个基于模型的行为标记,分别捕捉了参与者当前对已知风险和模糊性(部分未知风险)的容忍度。当前的焦虑、渴望、戒断和不依从通过访谈和诊所记录进行评估。阿片类药物的使用通过随机尿液毒物检测和自我报告来确定。

结果

70 名患者(平均[SE]年龄 44.7[1.3]岁;12 名女性和 58 名男性[82.9%男性])和 55 名对照参与者(平均[SE]年龄 42.4[1.5]岁;13 名女性和 42 名男性[76.4%男性])被纳入。在与患者完成的 552 次会议中(平均[SE],每人 7.89[0.59]次),有 252 次(45.7%)直接发生了阿片类药物使用事件(平均[SE],每人 3.60[0.44]次)。从任务参数来看,只有模糊容忍度与增加前瞻性阿片类药物使用的几率显著相关(调整后的优势比,1.37[95%CI,1.07-1.76]),这表明患者在这些使用事件之前对模糊风险的容忍度更高。模糊容忍度与前瞻性使用的关联独立于既定的临床因素(调整后的优势比,1.29[95%CI,1.01-1.65];P=0.04),因此,结合这些因素的模型可以更好地解释再使用风险的变化。在完成 197 次会议的患者(平均[SE],每人 3.58[0.21]次)和对照参与者之间,没有观察到模糊容忍度的显著差异;然而,患者对已知风险的容忍度更高(B=0.56[95%CI,0.05-1.07])。

结论和相关性

计算方法可以提供有关阿片类药物再使用易感性的潜在认知因素的机制见解,并可能具有临床应用的前景。

相似文献

2
Association of Current Opioid Use With Serious Adverse Events Among Older Adult Survivors of Breast Cancer.
JAMA Netw Open. 2020 Sep 1;3(9):e2016858. doi: 10.1001/jamanetworkopen.2020.16858.
3
Erratum.
Mult Scler. 2016 Oct;22(12):NP9-NP11. doi: 10.1177/1352458515585718. Epub 2015 Jun 3.
4
Intolerance of uncertainty in opioid dependency - Relationship with trait anxiety and impulsivity.
PLoS One. 2017 Jul 31;12(7):e0181955. doi: 10.1371/journal.pone.0181955. eCollection 2017.
6
8
Neural Mechanisms Underlying Risk and Ambiguity Attitudes.
J Cogn Neurosci. 2017 Nov;29(11):1845-1859. doi: 10.1162/jocn_a_01162. Epub 2017 Jul 7.
9
Association of Gabapentinoids With the Risk of Opioid-Related Adverse Events in Surgical Patients in the United States.
JAMA Netw Open. 2020 Dec 1;3(12):e2031647. doi: 10.1001/jamanetworkopen.2020.31647.
10

引用本文的文献

1
Education Improves Perceived Control but Not Risk Identification in Adolescents Regarding Fentanyl.
Children (Basel). 2025 Jun 17;12(6):794. doi: 10.3390/children12060794.
2
Computational characterization of metacognitive ability in subjective decision-making.
bioRxiv. 2025 May 28:2025.05.23.655775. doi: 10.1101/2025.05.23.655775.
3
4
Modeling decision-making under uncertainty with qualitative outcomes.
PLoS Comput Biol. 2025 Mar 3;21(3):e1012440. doi: 10.1371/journal.pcbi.1012440. eCollection 2025 Mar.
5
Social Risk Coding by Amygdala Activity and Connectivity with the Dorsal Anterior Cingulate Cortex.
J Neurosci. 2025 Jan 29;45(5):e1149242024. doi: 10.1523/JNEUROSCI.1149-24.2024.
6
Reduced risk tolerance and cortical excitability following COVID-19 infection.
CNS Neurosci Ther. 2024 Aug;30(8):e14879. doi: 10.1111/cns.14879.
9
Bridging minds and policies: supporting early career researchers in translating computational psychiatry research.
Neuropsychopharmacology. 2024 May;49(6):903-904. doi: 10.1038/s41386-024-01834-1. Epub 2024 Feb 28.
10
Recent Opioid Use Impedes Range Adaptation in Reinforcement Learning in Human Addiction.
Biol Psychiatry. 2024 May 15;95(10):974-984. doi: 10.1016/j.biopsych.2023.12.005. Epub 2023 Dec 13.

本文引用的文献

1
Neuroanatomical Substrates for Risk Behavior.
Neuroscientist. 2017 Jun;23(3):275-286. doi: 10.1177/1073858416672414. Epub 2016 Oct 9.
3
Decision-making, somatic markers and emotion processing in opiate users.
Psychopharmacology (Berl). 2018 Jan;235(1):223-232. doi: 10.1007/s00213-017-4760-0. Epub 2017 Oct 23.
4
Risk preference shares the psychometric structure of major psychological traits.
Sci Adv. 2017 Oct 4;3(10):e1701381. doi: 10.1126/sciadv.1701381. eCollection 2017 Oct.
5
Differences in decision-making as a function of drug of choice.
Pharmacol Biochem Behav. 2018 Jan;164:118-124. doi: 10.1016/j.pbb.2017.09.007. Epub 2017 Sep 18.
7
Stages of dysfunctional decision-making in addiction.
Pharmacol Biochem Behav. 2018 Jan;164:99-105. doi: 10.1016/j.pbb.2017.02.003. Epub 2017 Feb 16.
8
Acute stress does not affect risky monetary decision-making.
Neurobiol Stress. 2016 Nov 2;5:19-25. doi: 10.1016/j.ynstr.2016.10.003. eCollection 2016 Dec.
10
Decision-making ability in current and past users of opiates: A meta-analysis.
Neurosci Biobehav Rev. 2016 Dec;71:342-351. doi: 10.1016/j.neubiorev.2016.09.011. Epub 2016 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验