Suppr超能文献

主观决策中元认知能力的计算表征

Computational characterization of metacognitive ability in subjective decision-making.

作者信息

Plate Corey R, Govil Dhruv, Zheng Charles Y, Boundy-Singer Zoe M, Ziemba Corey M, Lopez-Guzman Silvia

机构信息

Unit on Computational Decision Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.

Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

bioRxiv. 2025 May 28:2025.05.23.655775. doi: 10.1101/2025.05.23.655775.

Abstract

Metacognition is the process of reflecting on and controlling one's own thoughts and behaviors. Metacognitive ability is often measured through modeling the relationship between confidence reports and choice behavior in tasks where performance can be objectively measured. Previous work has explored whether metacognitive ability is conserved across different types of tasks, and across different domains such as perception and memory. However, it is unclear whether approaches to the assessment of metacognitive ability that have worked in these contexts can be extended to value-based decision-making where objective accuracy cannot be evaluated. Here, we compare metacognitive ability across different tasks spanning perception and valuation, using Bayesian hierarchical estimation of the parameters of a computational process model of confidence. This model captures metacognitive ability as the uncertainty of an individual's own decision uncertainty, and can do so in the space of any decision variable, regardless of whether it indexes external features or internal, subjective states. We find that metacognitive ability can be reliably estimated in both objective and subjective decision-making tasks, and is relatively well conserved across tasks, especially within domains and similar confidence reporting paradigms.

摘要

元认知是对自己的思维和行为进行反思与控制的过程。元认知能力通常是通过在能够客观测量表现的任务中,对信心报告与选择行为之间的关系进行建模来衡量的。先前的研究探讨了元认知能力在不同类型的任务以及不同领域(如感知和记忆)中是否保持一致。然而,尚不清楚在这些情境中有效的元认知能力评估方法是否可以扩展到无法评估客观准确性的基于价值的决策中。在这里,我们使用信心计算过程模型参数的贝叶斯层次估计,比较了跨越感知和估值的不同任务中的元认知能力。该模型将元认知能力捕获为个体自身决策不确定性的不确定性,并且可以在任何决策变量的空间中做到这一点,无论该变量是索引外部特征还是内部主观状态。我们发现,在客观和主观决策任务中都可以可靠地估计元认知能力,并且元认知能力在不同任务中相对保持得较好,尤其是在同一领域和相似的信心报告范式内。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16ad/12154812/91e923d17fd7/nihpp-2025.05.23.655775v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验