Reiter Alexander, Asgari Jian, Wiechert Wolfgang, Oldiges Marco
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany.
Metabolites. 2022 Mar 17;12(3):257. doi: 10.3390/metabo12030257.
Metabolic footprinting represents a holistic approach to gathering large-scale metabolomic information of a given biological system and is, therefore, a driving force for systems biology and bioprocess development. The ongoing development of automated cultivation platforms increases the need for a comprehensive and rapid profiling tool to cope with the cultivation throughput. In this study, we implemented a workflow to provide and select relevant metabolite information from a genome-scale model to automatically build an organism-specific comprehensive metabolome analysis method. Based on in-house literature and predicted metabolite information, the deduced metabolite set was distributed in stackable methods for a chromatography-free dilute and shoot flow-injection analysis multiple-reaction monitoring profiling approach. The workflow was used to create a method specific for , covering 252 metabolites with 7 min/sample. The method was validated with a commercially available yeast metabolome standard, identifying up to 74.2% of the listed metabolites. As a first case study, three commercially available yeast extracts were screened with 118 metabolites passing quality control thresholds for statistical analysis, allowing to identify discriminating metabolites. The presented methodology provides metabolite screening in a time-optimised way by scaling analysis time to metabolite coverage and is open to other microbial systems simply starting from genome-scale model information.
代谢足迹分析是一种收集给定生物系统大规模代谢组学信息的整体方法,因此是系统生物学和生物过程开发的驱动力。自动化培养平台的不断发展增加了对全面、快速分析工具的需求,以应对培养通量。在本研究中,我们实施了一个工作流程,从基因组规模模型中提供和选择相关代谢物信息,以自动构建特定生物体的综合代谢组分析方法。基于内部文献和预测的代谢物信息,推导的代谢物集以可堆叠的方法分布,用于无色谱稀释和进样流动注射分析多反应监测分析方法。该工作流程用于创建一种特定于[具体生物]的方法,每个样品7分钟内可覆盖252种代谢物。该方法用市售酵母代谢组标准品进行了验证,可鉴定出高达74.2%的所列代谢物。作为第一个案例研究,对三种市售酵母提取物进行了筛选,有118种代谢物通过质量控制阈值用于统计分析,从而能够鉴定出有区分性的代谢物。所提出的方法通过将分析时间与代谢物覆盖范围进行缩放,以时间优化的方式提供代谢物筛选,并且仅从基因组规模模型信息出发就可应用于其他微生物系统。