Suppr超能文献

用于在基因组规模上设计微生物表型的不断扩展的计算工具集

The Expanding Computational Toolbox for Engineering Microbial Phenotypes at the Genome Scale.

作者信息

Zielinski Daniel Craig, Patel Arjun, Palsson Bernhard O

机构信息

Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark.

出版信息

Microorganisms. 2020 Dec 21;8(12):2050. doi: 10.3390/microorganisms8122050.

Abstract

Microbial strains are being engineered for an increasingly diverse array of applications, from chemical production to human health. While traditional engineering disciplines are driven by predictive design tools, these tools have been difficult to build for biological design due to the complexity of biological systems and many unknowns of their quantitative behavior. However, due to many recent advances, the gap between design in biology and other engineering fields is closing. In this work, we discuss promising areas of development of computational tools for engineering microbial strains. We define five frontiers of active research: (1) Constraint-based modeling and metabolic network reconstruction, (2) Kinetics and thermodynamic modeling, (3) Protein structure analysis, (4) Genome sequence analysis, and (5) Regulatory network analysis. Experimental and machine learning drivers have enabled these methods to improve by leaps and bounds in both scope and accuracy. Modern strain design projects will require these tools to be comprehensively applied to the entire cell and efficiently integrated within a single workflow. We expect that these frontiers, enabled by the ongoing revolution of big data science, will drive forward more advanced and powerful strain engineering strategies.

摘要

微生物菌株正被设计用于越来越多样化的一系列应用,从化学生产到人类健康。虽然传统工程学科由预测性设计工具驱动,但由于生物系统的复杂性及其定量行为的许多未知因素,这些工具很难用于生物设计。然而,由于最近的许多进展,生物学设计与其他工程领域之间的差距正在缩小。在这项工作中,我们讨论了用于工程化微生物菌株的计算工具的有前景的发展领域。我们定义了五个活跃研究前沿:(1)基于约束的建模和代谢网络重建,(2)动力学和热力学建模,(3)蛋白质结构分析,(4)基因组序列分析,以及(5)调控网络分析。实验和机器学习驱动因素使这些方法在范围和准确性上都有了飞跃式改进。现代菌株设计项目将要求这些工具全面应用于整个细胞并有效地整合到单个工作流程中。我们预计,由大数据科学的持续革命推动的这些前沿将推动更先进、更强大的菌株工程策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验