Suppr超能文献

基于内容的预测中海马体作用的分离。

Content-based Dissociation of Hippocampal Involvement in Prediction.

机构信息

Yale University.

University College London.

出版信息

J Cogn Neurosci. 2020 Mar;32(3):527-545. doi: 10.1162/jocn_a_01509. Epub 2019 Dec 10.

Abstract

Recent work suggests that a key function of the hippocampus is to predict the future. This is thought to depend on its ability to bind inputs over time and space and to retrieve upcoming or missing inputs based on partial cues. In line with this, previous research has revealed prediction-related signals in the hippocampus for complex visual objects, such as fractals and abstract shapes. Implicit in such accounts is that these computations in the hippocampus reflect domain-general processes that apply across different types and modalities of stimuli. An alternative is that the hippocampus plays a more domain-specific role in predictive processing, with the type of stimuli being predicted determining its involvement. To investigate this, we compared hippocampal responses to auditory cues predicting abstract shapes (Experiment 1) versus oriented gratings (Experiment 2). We measured brain activity in male and female human participants using high-resolution fMRI, in combination with inverted encoding models to reconstruct shape and orientation information. Our results revealed that expectations about shape and orientation evoked distinct representations in the hippocampus. For complex shapes, the hippocampus represented which shape was expected, potentially serving as a source of top-down predictions. In contrast, for simple gratings, the hippocampus represented only unexpected orientations, more reminiscent of a prediction error. We discuss several potential explanations for this content-based dissociation in hippocampal function, concluding that the computational role of the hippocampus in predictive processing may depend on the nature and complexity of stimuli.

摘要

最近的研究表明,海马体的一个关键功能是预测未来。这被认为依赖于其在时间和空间上绑定输入的能力,并基于部分线索检索即将到来或缺失的输入。与此一致,先前的研究已经在海马体中揭示了与复杂视觉对象(如分形和抽象形状)相关的预测信号。这些解释的隐含前提是,海马体中的这些计算反映了适用于不同类型和模式刺激的一般领域的过程。另一种观点是,海马体在预测处理中发挥更具特定领域的作用,被预测的刺激类型决定了其参与程度。为了研究这一点,我们比较了预测抽象形状(实验 1)和定向光栅(实验 2)的听觉线索对海马体反应的影响。我们使用高分辨率 fMRI 结合反转编码模型,在男性和女性人类参与者中测量了大脑活动,以重建形状和方向信息。我们的结果表明,对形状和方向的期望在海马体中引起了不同的表示。对于复杂的形状,海马体表示预期的形状,可能充当自上而下预测的来源。相比之下,对于简单的光栅,海马体只表示出乎意料的方向,更类似于预测误差。我们讨论了海马体功能中这种基于内容的分离的几种可能解释,得出结论认为,海马体在预测处理中的计算作用可能取决于刺激的性质和复杂性。

相似文献

1
Content-based Dissociation of Hippocampal Involvement in Prediction.
J Cogn Neurosci. 2020 Mar;32(3):527-545. doi: 10.1162/jocn_a_01509. Epub 2019 Dec 10.
2
Associative Prediction of Visual Shape in the Hippocampus.
J Neurosci. 2018 Aug 1;38(31):6888-6899. doi: 10.1523/JNEUROSCI.0163-18.2018. Epub 2018 Jul 9.
3
Hippocampal involvement in detection of deviant auditory and visual stimuli.
Hippocampus. 2005;15(1):132-9. doi: 10.1002/hipo.20039.
4
Prior Expectations of Motion Direction Modulate Early Sensory Processing.
J Neurosci. 2020 Aug 12;40(33):6389-6397. doi: 10.1523/JNEUROSCI.0537-20.2020. Epub 2020 Jul 8.
5
Hippocampal Mismatch Signals Are Modulated by the Strength of Neural Predictions and Their Similarity to Outcomes.
J Neurosci. 2016 Dec 14;36(50):12677-12687. doi: 10.1523/JNEUROSCI.1850-16.2016. Epub 2016 Nov 7.
6
Neural correlates of cue-unique outcome expectations under differential outcomes training: an fMRI study.
Brain Res. 2009 Apr 10;1265:111-27. doi: 10.1016/j.brainres.2008.12.072. Epub 2009 Jan 15.
7
Differential Representations of Perceived and Retrieved Visual Information in Hippocampus and Cortex.
Cereb Cortex. 2019 Sep 13;29(10):4452-4461. doi: 10.1093/cercor/bhy325.
8
Temporal prediction errors in visual and auditory cortices.
Curr Biol. 2014 Apr 14;24(8):R309-10. doi: 10.1016/j.cub.2014.02.007.
9
Mapping Frequency-Specific Tone Predictions in the Human Auditory Cortex at High Spatial Resolution.
J Neurosci. 2018 May 23;38(21):4934-4942. doi: 10.1523/JNEUROSCI.2205-17.2018. Epub 2018 Apr 30.
10
Visual Prediction Error Spreads Across Object Features in Human Visual Cortex.
J Neurosci. 2016 Dec 14;36(50):12746-12763. doi: 10.1523/JNEUROSCI.1546-16.2016. Epub 2016 Nov 3.

引用本文的文献

1
Communication of perceptual predictions from the hippocampus to the deep layers of the parahippocampal cortex.
Sci Adv. 2025 May 23;11(21):eads4970. doi: 10.1126/sciadv.ads4970. Epub 2025 May 21.
2
The role of memory in affirming-the-consequent fallacy.
iScience. 2025 Jan 25;28(2):111889. doi: 10.1016/j.isci.2025.111889. eCollection 2025 Feb 21.
3
Memory-based predictions prime perceptual judgments across head turns in immersive, real-world scenes.
Curr Biol. 2025 Jan 6;35(1):121-130.e6. doi: 10.1016/j.cub.2024.11.024. Epub 2024 Dec 17.
4
Schema-driven prediction effects on episodic memory across the lifespan.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 4;379(1913):20230401. doi: 10.1098/rstb.2023.0401. Epub 2024 Sep 16.
5
Multiple mechanisms of visual prediction as revealed by the timecourse of scene-object facilitation.
Psychophysiology. 2024 May;61(5):e14503. doi: 10.1111/psyp.14503. Epub 2024 Jan 5.
6
Mapping multidimensional content representations to neural and behavioral expressions of episodic memory.
Neuroimage. 2023 Aug 15;277:120222. doi: 10.1016/j.neuroimage.2023.120222. Epub 2023 Jun 14.
7
Dissociating Hippocampal and Cortical Contributions to Predictive Processing.
J Neurosci. 2023 Jan 11;43(2):184-186. doi: 10.1523/JNEUROSCI.1840-22.2022.
8
Concurrent contextual and time-distant mnemonic information co-exist as feedback in the human visual cortex.
Neuroimage. 2023 Jan;265:119778. doi: 10.1016/j.neuroimage.2022.119778. Epub 2022 Nov 30.
9
The hearing hippocampus.
Prog Neurobiol. 2022 Nov;218:102326. doi: 10.1016/j.pneurobio.2022.102326. Epub 2022 Jul 21.
10
Contextual Expectations Shape Cortical Reinstatement of Sensory Representations.
J Neurosci. 2022 Jul 27;42(30):5956-5965. doi: 10.1523/JNEUROSCI.2045-21.2022. Epub 2022 Jun 24.

本文引用的文献

1
A Roadmap for Understanding Memory: Decomposing Cognitive Processes into Operations and Representations.
eNeuro. 2019 Jul 10;6(4). doi: 10.1523/ENEURO.0122-19.2019. Print 2019 Jul/Aug.
2
What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior.
Neuron. 2018 Oct 24;100(2):490-509. doi: 10.1016/j.neuron.2018.10.002.
3
Eye Movement-Related Confounds in Neural Decoding of Visual Working Memory Representations.
eNeuro. 2018 Oct 10;5(4). doi: 10.1523/ENEURO.0401-17.2018. eCollection 2018 Jul-Aug.
4
Space and Time: The Hippocampus as a Sequence Generator.
Trends Cogn Sci. 2018 Oct;22(10):853-869. doi: 10.1016/j.tics.2018.07.006.
5
Big-Loop Recurrence within the Hippocampal System Supports Integration of Information across Episodes.
Neuron. 2018 Sep 19;99(6):1342-1354.e6. doi: 10.1016/j.neuron.2018.08.009.
7
Integrating time from experience in the lateral entorhinal cortex.
Nature. 2018 Sep;561(7721):57-62. doi: 10.1038/s41586-018-0459-6. Epub 2018 Aug 29.
8
Generative Predictive Codes by Multiplexed Hippocampal Neuronal Tuplets.
Neuron. 2018 Sep 19;99(6):1329-1341.e6. doi: 10.1016/j.neuron.2018.07.047. Epub 2018 Aug 23.
9
How Do Expectations Shape Perception?
Trends Cogn Sci. 2018 Sep;22(9):764-779. doi: 10.1016/j.tics.2018.06.002. Epub 2018 Jun 29.
10
Differentiable Processing of Objects, Associations, and Scenes within the Hippocampus.
J Neurosci. 2018 Sep 19;38(38):8146-8159. doi: 10.1523/JNEUROSCI.0263-18.2018. Epub 2018 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验