Metropolitan Studies, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
Betty Irene Moore School of Nursing, University of California Davis, Davis, California, USA.
BMJ Open. 2019 Dec 11;9(12):e031646. doi: 10.1136/bmjopen-2019-031646.
This study assesses the performance of the North American Association of Central Cancer Registries Asian/Pacific Islander Identification Algorithm (NAPIIA) to infer Hmong ethnicity.
Analyses of electronic health records (EHRs) from 1 January 2011 to 1 October 2015. The NAPIIA was applied to the EHR data, and self-reported Hmong ethnicity from a questionnaire was used as the gold standard. Sensitivity, specificity, positive (PPV) and negative predictive values (NPVs) were calculated comparing the source data ethnicity inferred by the algorithm with the self-reported ethnicity from the questionnaire.
EHRs indicating Hmong, Chinese, Vietnamese and Korean ethnicity who met the original study inclusion criteria were analysed.
The NAPIIA had a sensitivity of 78%, a specificity of 99.9%, a PPV of 96% and an NPV of 99%. The prevalence of Hmong population in the sample was 3.9%.
The high sensitivity of the NAPIIA indicates its effectiveness in detecting Hmong ethnicity. The applicability of the NAPIIA to a multitude of Asian subgroups can advance Asian health disparity research by enabling researchers to disaggregate Asian data and unmask health challenges of different Asian subgroups.
本研究评估了北美癌症登记协会亚太裔识别算法(NAPIIA)推断苗族裔的性能。
对 2011 年 1 月 1 日至 2015 年 10 月 1 日的电子健康记录(EHR)进行分析。将 NAPIIA 应用于 EHR 数据,并将来自问卷的自我报告的苗族裔作为金标准。通过比较算法推断的源数据族裔与问卷中的自我报告的族裔,计算了敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。
符合原始研究纳入标准且表明苗族、中国、越南和韩国族裔的 EHR 被分析。
NAPIIA 的敏感性为 78%,特异性为 99.9%,PPV 为 96%,NPV 为 99%。样本中苗族人口的流行率为 3.9%。
NAPIIA 的高敏感性表明其在检测苗族裔方面的有效性。NAPIIA 适用于多种亚洲亚组,可以通过使研究人员能够细分亚洲数据并揭示不同亚洲亚组的健康挑战,从而推进亚洲健康差距研究。