Mironova Galina F, Skiba Ekaterina A, Kukhlenko Aleksey A
Laboratory of Bioconversion, Laboratory of Chemical Engineering Processes and Apparatuses, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, 659322 Altai Krai Russia.
3 Biotech. 2019 Dec;9(12):455. doi: 10.1007/s13205-019-1988-x. Epub 2019 Nov 19.
This study suggests a mathematical description and the optimization of the pre-saccharification time during simultaneous saccharification and fermentation with delayed yeast inoculation (dSSF) to ensure the fastest and fullest possible conversion of a substrate into the target product-bioethanol. A pulp derived by alkaline delignification of oat hulls was used as a substrate. The pre-saccharification step of oat-hull pulp was performed at a solid loading of 60 g/L, at 46 ± 2 °C, using mixed enzymes CelloLux-A and BrewZyme BGX, the pre-saccharification time was 8, 15, 24, 39, 48 and 72 h. Afterwards, the reaction mixture was cooled to 28 °C, a 10% inoculum of Y-1693 was seeded, and fermentation combined with saccharification. The optimum pre-saccharification time (inoculation time) under these conditions was found to be 24 h, thus providing the maximum hydrolysis of cellulose and hemicelluloses and the highest yield of bioethanol. The procedure suggested herein for determining the optimum pre-saccharification time can be used for other model substrates from lignocellulosic feedstocks.
本研究提出了一种数学描述方法,并对延迟接种酵母的同步糖化发酵(dSSF)过程中的预糖化时间进行了优化,以确保底物尽可能快速、充分地转化为目标产物——生物乙醇。以燕麦壳经碱性脱木质素处理得到的纸浆作为底物。燕麦壳纸浆的预糖化步骤在60 g/L的固含量、46±2°C条件下,使用混合酶CelloLux-A和BrewZyme BGX进行,预糖化时间分别为8、15、24、39、48和72小时。之后,将反应混合物冷却至28°C,接种10%的Y-1693,进行糖化与发酵相结合的过程。发现在这些条件下,最佳预糖化时间(接种时间)为24小时,从而实现了纤维素和半纤维素的最大程度水解以及生物乙醇的最高产量。本文提出的确定最佳预糖化时间的方法可用于其他木质纤维素原料的模型底物。