Suppr超能文献

燕麦壳生物乙醇技术中双阶段固态发酵(dSSF)过程中预糖化时间的优化

Optimization of pre-saccharification time during dSSF process in oat-hull bioethanol technology.

作者信息

Mironova Galina F, Skiba Ekaterina A, Kukhlenko Aleksey A

机构信息

Laboratory of Bioconversion, Laboratory of Chemical Engineering Processes and Apparatuses, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, 659322 Altai Krai Russia.

出版信息

3 Biotech. 2019 Dec;9(12):455. doi: 10.1007/s13205-019-1988-x. Epub 2019 Nov 19.

Abstract

This study suggests a mathematical description and the optimization of the pre-saccharification time during simultaneous saccharification and fermentation with delayed yeast inoculation (dSSF) to ensure the fastest and fullest possible conversion of a substrate into the target product-bioethanol. A pulp derived by alkaline delignification of oat hulls was used as a substrate. The pre-saccharification step of oat-hull pulp was performed at a solid loading of 60 g/L, at 46 ± 2 °C, using mixed enzymes CelloLux-A and BrewZyme BGX, the pre-saccharification time was 8, 15, 24, 39, 48 and 72 h. Afterwards, the reaction mixture was cooled to 28 °C, a 10% inoculum of Y-1693 was seeded, and fermentation combined with saccharification. The optimum pre-saccharification time (inoculation time) under these conditions was found to be 24 h, thus providing the maximum hydrolysis of cellulose and hemicelluloses and the highest yield of bioethanol. The procedure suggested herein for determining the optimum pre-saccharification time can be used for other model substrates from lignocellulosic feedstocks.

摘要

本研究提出了一种数学描述方法,并对延迟接种酵母的同步糖化发酵(dSSF)过程中的预糖化时间进行了优化,以确保底物尽可能快速、充分地转化为目标产物——生物乙醇。以燕麦壳经碱性脱木质素处理得到的纸浆作为底物。燕麦壳纸浆的预糖化步骤在60 g/L的固含量、46±2°C条件下,使用混合酶CelloLux-A和BrewZyme BGX进行,预糖化时间分别为8、15、24、39、48和72小时。之后,将反应混合物冷却至28°C,接种10%的Y-1693,进行糖化与发酵相结合的过程。发现在这些条件下,最佳预糖化时间(接种时间)为24小时,从而实现了纤维素和半纤维素的最大程度水解以及生物乙醇的最高产量。本文提出的确定最佳预糖化时间的方法可用于其他木质纤维素原料的模型底物。

相似文献

1
Optimization of pre-saccharification time during dSSF process in oat-hull bioethanol technology.
3 Biotech. 2019 Dec;9(12):455. doi: 10.1007/s13205-019-1988-x. Epub 2019 Nov 19.
3
Effect of pretreatment strategies on halophyte to improve saccharification using thermostable cellulases.
Front Bioeng Biotechnol. 2023 Feb 21;11:1135424. doi: 10.3389/fbioe.2023.1135424. eCollection 2023.
5
Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol.
Biotechnol Prog. 2005 May-Jun;21(3):816-22. doi: 10.1021/bp049564n.
8
Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion.
Bioresour Technol. 2015 Jun;186:309-315. doi: 10.1016/j.biortech.2015.03.037. Epub 2015 Mar 14.
9
Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.
J Appl Microbiol. 2018 Aug;125(2):422-440. doi: 10.1111/jam.13886. Epub 2018 May 23.
10
Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull.
Bioengineering (Basel). 2017 Mar 26;4(2):25. doi: 10.3390/bioengineering4020025.

本文引用的文献

2
Cellulosic ethanol production: Progress, challenges and strategies for solutions.
Biotechnol Adv. 2019 May-Jun;37(3):491-504. doi: 10.1016/j.biotechadv.2019.03.002. Epub 2019 Mar 5.
3
Simultaneous saccharification and bioethanol production from corn cobs: Process optimization and kinetic studies.
Bioresour Technol. 2018 Aug;262:32-41. doi: 10.1016/j.biortech.2018.04.056. Epub 2018 Apr 17.
4
Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment.
3 Biotech. 2018 Mar;8(3):166. doi: 10.1007/s13205-018-1186-2. Epub 2018 Mar 8.
5
Yeasts in sustainable bioethanol production: A review.
Biochem Biophys Rep. 2017 Mar 6;10:52-61. doi: 10.1016/j.bbrep.2017.03.003. eCollection 2017 Jul.
6
Enzyme kinetics of cellulose hydrolysis of and oat hulls.
3 Biotech. 2017 Oct;7(5):317. doi: 10.1007/s13205-017-0964-6. Epub 2017 Sep 14.
7
Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization.
Front Microbiol. 2016 Mar 3;7:241. doi: 10.3389/fmicb.2016.00241. eCollection 2016.
9
Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates.
Curr Opin Chem Biol. 2015 Dec;29:100-7. doi: 10.1016/j.cbpa.2015.08.014. Epub 2015 Oct 31.
10
Improving industrial yeast strains: exploiting natural and artificial diversity.
FEMS Microbiol Rev. 2014 Sep;38(5):947-95. doi: 10.1111/1574-6976.12073. Epub 2014 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验