Suppr超能文献

因果中介分析与传统中介分析的对应关系:中介作用的联系是通过处理交互作用实现的。

The Correspondence Between Causal and Traditional Mediation Analysis: the Link Is the Mediator by Treatment Interaction.

机构信息

Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ, 85287-1104, USA.

Center for Children and Families, Department of Psychology, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.

出版信息

Prev Sci. 2020 Feb;21(2):147-157. doi: 10.1007/s11121-019-01076-4.

Abstract

Mediation analysis is a methodology used to understand how and why behavioral phenomena occur. New mediation methods based on the potential outcomes framework are a seminal advancement for mediation analysis because they focus on the causal basis of mediation. Despite the importance of the potential outcomes framework in other fields, the methods are not well known in prevention and other disciplines. The interaction of a treatment (X) and a mediator (M) on an outcome variable (Y) is central to the potential outcomes framework for causal mediation analysis and provides a way to link traditional and modern causal mediation methods. As described in the paper, for a continuous mediator and outcome, if the XM interaction is zero, then potential outcomes estimators of the mediated effect are equal to the traditional model estimators. If the XM interaction is nonzero, the potential outcomes estimators correspond to simple direct and simple mediated contrasts for the treatment and the control groups in traditional mediation analysis. Links between traditional and causal mediation estimators clarify the meaning of potential outcomes framework mediation quantities. A simulation study demonstrates that testing for a XM interaction that is zero in the population can reduce power to detect mediated effects, and ignoring a nonzero XM interaction in the population can also reduce power to detect mediated effects in some situations. We recommend that prevention scientists incorporate evaluation of the XM interaction in their research.

摘要

中介分析是一种用于理解行为现象如何以及为何发生的方法。基于潜在结果框架的新中介分析方法是中介分析的重要进展,因为它们侧重于中介的因果基础。尽管潜在结果框架在其他领域很重要,但这些方法在预防和其他学科中并不为人所知。治疗(X)和中介(M)对结果变量(Y)的相互作用是因果中介分析潜在结果框架的核心,为传统和现代的中介方法提供了联系。正如论文中所描述的,如果中介变量和结果变量都是连续的,并且 XM 交互作用为零,那么中介效应的潜在结果估计值等于传统模型估计值。如果 XM 交互作用不为零,那么潜在结果估计值对应于传统中介分析中治疗组和对照组的简单直接和简单中介对比。传统和因果中介估计值之间的联系阐明了潜在结果框架中介量的含义。一项模拟研究表明,在人群中检验 XM 交互作用是否为零会降低检测中介效应的功效,而忽略人群中 XM 交互作用也会降低在某些情况下检测中介效应的功效。我们建议预防科学家在其研究中纳入对 XM 交互作用的评估。

相似文献

2
Causal Mediation Programs in R, M, SAS, SPSS, and Stata.
Struct Equ Modeling. 2020;27(6):975-984. doi: 10.1080/10705511.2020.1777133. Epub 2020 Aug 3.
3
The use of traditional and causal estimators for mediation models with a binary outcome and exposure-mediator interaction.
Struct Equ Modeling. 2021;28(3):345-355. doi: 10.1080/10705511.2020.1811709. Epub 2020 Sep 18.
5
Accommodating a Latent XM Interaction in Statistical Mediation Analysis.
Multivariate Behav Res. 2023 Jul-Aug;58(4):659-674. doi: 10.1080/00273171.2022.2119928. Epub 2022 Oct 12.
6
G-computation demonstration in causal mediation analysis.
Eur J Epidemiol. 2015 Oct;30(10):1119-27. doi: 10.1007/s10654-015-0100-z. Epub 2015 Nov 4.
8
Generalized causal mediation analysis.
Biometrics. 2011 Sep;67(3):1028-38. doi: 10.1111/j.1541-0420.2010.01547.x. Epub 2011 Feb 9.
10
Mediation analysis methods used in observational research: a scoping review and recommendations.
BMC Med Res Methodol. 2021 Oct 25;21(1):226. doi: 10.1186/s12874-021-01426-3.

引用本文的文献

7
Understanding the link between ALDH2 genotypes and diabetes.
Front Endocrinol (Lausanne). 2025 Feb 19;16:1451722. doi: 10.3389/fendo.2025.1451722. eCollection 2025.
9
Practical challenges in mediation analysis: a guide for applied researchers.
Health Serv Outcomes Res Methodol. 2025;25(1):57-84. doi: 10.1007/s10742-024-00327-4. Epub 2024 Apr 12.
10
Causal Estimands and Multiply Robust Estimation of Mediated-Moderation.
Multivariate Behav Res. 2025 May-Jun;60(3):460-486. doi: 10.1080/00273171.2024.2444949. Epub 2025 Jan 13.

本文引用的文献

1
Data Are Not Enough-Hurray For Causality!
Am J Public Health. 2018 May;108(5):622. doi: 10.2105/AJPH.2018.304379.
2
Causal Thinking as a Critical Tool for Eliminating Social Inequalities in Health.
Am J Public Health. 2018 May;108(5):623. doi: 10.2105/AJPH.2018.304383.
3
The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data.
Am J Public Health. 2018 May;108(5):616-619. doi: 10.2105/AJPH.2018.304337. Epub 2018 Mar 22.
4
Haldane's Lungs: A Case Study in Path Analysis.
Multivariate Behav Res. 1997 Jan 1;32(1):1-38. doi: 10.1207/s15327906mbr3201_1.
5
A proposed clinical and biological interpretation of mediated interaction.
Eur J Epidemiol. 2015 Oct;30(10):1115-8. doi: 10.1007/s10654-015-0087-5. Epub 2015 Oct 5.
6
Assessing the generalizability of randomized trial results to target populations.
Prev Sci. 2015 Apr;16(3):475-85. doi: 10.1007/s11121-014-0513-z.
7
Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis.
Pers Soc Psychol Rev. 2015 Feb;19(1):30-43. doi: 10.1177/1088868314542878. Epub 2014 Jul 25.
8
A unification of mediation and interaction: a 4-way decomposition.
Epidemiology. 2014 Sep;25(5):749-61. doi: 10.1097/EDE.0000000000000121.
9
Interpretation and identification of causal mediation.
Psychol Methods. 2014 Dec;19(4):459-81. doi: 10.1037/a0036434. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验