Suppr超能文献

具有二元结局和暴露-中介变量交互作用的中介模型中传统估计量和因果估计量的使用。

The use of traditional and causal estimators for mediation models with a binary outcome and exposure-mediator interaction.

作者信息

Rijnhart Judith J M, Valente Matthew J, MacKinnon David P, Twisk Jos W R, Heymans Martijn W

机构信息

Amsterdam UMC, location VU University Medical Center, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.

Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States of America.

出版信息

Struct Equ Modeling. 2021;28(3):345-355. doi: 10.1080/10705511.2020.1811709. Epub 2020 Sep 18.

Abstract

An important recent development in mediation analysis is the use of causal mediation analysis. Causal mediation analysis decomposes the total exposure effect into causal direct and indirect effects in the presence of exposure-mediator interaction. However, in practice, traditional mediation analysis is still most widely used. The aim of this paper is to demonstrate the similarities and differences between the causal and traditional estimators for mediation models with a continuous mediator, a binary outcome, and exposure-mediator interaction. A real-life data example, analytical comparisons, and a simulation study were used to demonstrate the similarities and differences between the traditional and causal estimators. The causal and traditional estimators provide similar indirect effect estimates, but different direct and total effect estimates. Traditional mediation analysis may only be used when conditional direct effect estimates are of interest. Causal mediation analysis is the generally preferred method as its casual effect estimates help unravel causal mechanisms.

摘要

中介分析中一个重要的近期发展是因果中介分析的使用。因果中介分析在存在暴露-中介变量交互作用的情况下,将总暴露效应分解为因果直接效应和间接效应。然而,在实践中,传统中介分析仍然应用最为广泛。本文旨在说明具有连续中介变量、二元结局以及暴露-中介变量交互作用的中介模型的因果估计量与传统估计量之间的异同。通过一个实际数据示例、分析比较以及模拟研究来展示传统估计量与因果估计量之间的异同。因果估计量和传统估计量提供的间接效应估计相似,但直接效应和总效应估计不同。传统中介分析仅在对条件直接效应估计感兴趣时才可使用。因果中介分析是普遍更受青睐的方法,因为其因果效应估计有助于揭示因果机制。

相似文献

5
A brief primer on conducting regression-based causal mediation analysis.基于回归的因果中介分析简介。
Psychol Trauma. 2023 Sep;15(6):930-938. doi: 10.1037/tra0001421. Epub 2023 Jan 26.

引用本文的文献

2
Mediating factors associated with alcohol intake and periodontal condition.与酒精摄入和牙周状况相关的中介因素。
Front Oral Health. 2025 Apr 24;6:1524772. doi: 10.3389/froh.2025.1524772. eCollection 2025.
5
Practical challenges in mediation analysis: a guide for applied researchers.中介分析中的实际挑战:应用研究人员指南
Health Serv Outcomes Res Methodol. 2025;25(1):57-84. doi: 10.1007/s10742-024-00327-4. Epub 2024 Apr 12.
8
Understanding the BP-Lowering Mechanism of Chlorthalidone in Advanced Kidney Disease.了解氯噻酮在晚期肾病中的降压机制。
Clin J Am Soc Nephrol. 2024 Aug 1;19(8):949-951. doi: 10.2215/CJN.0000000000000520. Epub 2024 Jul 9.

本文引用的文献

5
A Tutorial in Bayesian Potential Outcomes Mediation Analysis.贝叶斯潜在结果中介分析教程
Struct Equ Modeling. 2018;25(1):121-136. doi: 10.1080/10705511.2017.1342541. Epub 2017 Jul 25.
6
An introduction to g methods.G方法简介。
Int J Epidemiol. 2017 Apr 1;46(2):756-762. doi: 10.1093/ije/dyw323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验