Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
Int J Environ Res Public Health. 2019 Dec 12;16(24):5061. doi: 10.3390/ijerph16245061.
Face scanners promise wide applications in medicine and dentistry, including facial recognition, capturing facial emotions, facial cosmetic planning and surgery, and maxillofacial rehabilitation. Higher accuracy improves the quality of the data recorded from the face scanner, which ultimately, will improve the outcome. Although there are various face scanners available on the market, there is no evidence of a suitable face scanner for practical applications. The aim of this in vitro study was to analyze the face scans obtained from four scanners; EinScan Pro (EP), EinScan Pro 2X Plus (EP+) (Shining 3D Tech. Co., Ltd. Hangzhou, China), iPhone X (IPX) (Apple Store, Cupertino, CA, USA), and Planmeca ProMax 3D Mid (PM) (Planmeca USA, Inc. IL, USA), and to compare scans obtained from various scanners with the control (measured from Vernier caliper). This should help to identify the appropriate scanner for face scanning. A master face model was created and printed from polylactic acid using the resolution of 200 microns on x, y, and z axes and designed in Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA). The face models were 3D scanned with four scanners, five times, according to the manufacturer's recommendations; EinScan Pro (Shining 3D Tech. Co., Ltd. Hangzhou, China), EinScan Pro 2X Plus (Shining 3D Tech. Co., Ltd. Hangzhou, China) using Shining Software, iPhone X (Apple Store, Cupertino, CA, USA) using Bellus3D Face Application (Bellus3D, version 1.6.2, Bellus3D, Inc. Campbell, CA, USA), and Planmeca ProMax 3D Mid (PM) (Planmeca USA, Inc. IL, USA). Scan data files were saved as stereolithography (STL) files for the measurements. From the STL files, digital face models are created in the computer using Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA). Various measurements were measured five times from the reference points in three axes (x, y, and z) using a digital Vernier caliper (VC) (Mitutoyo 150 mm Digital Caliper, Mitutoyo Co., Kanagawa, Japan), and the mean was calculated, which was used as the control. Measurements were measured on the digital face models of EP, EP+, IPX, and PM using Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA). The descriptive statistics were done from SPSS version 20 (IBM Company, Chicago, USA). One-way ANOVA with post hoc using Scheffe was done to analyze the differences between the control and the scans (EP, EP+, IPX, and PM). The significance level was set at = 0.05. EP+ showed the highest accuracy. EP showed medium accuracy and some lesser accuracy (accurate until 10 mm of length), but IPX and PM showed the least accuracy. EP+ showed accuracy in measuring the 2 mm of depth (diameter 6 mm). All other scanners (EP, IPX, and PM) showed less accuracy in measuring depth. Finally, the accuracy of an optical scan is dependent on the technology used by each scanner. It is recommended to use EP+ for face scanning.
面部扫描仪在医学和牙科领域有广泛的应用,包括人脸识别、捕捉面部表情、面部美容规划和手术、以及颌面康复。更高的准确性提高了从面部扫描仪记录的数据的质量,最终将提高结果。虽然市场上有各种面部扫描仪,但没有证据表明有适合实际应用的合适的面部扫描仪。本体外研究的目的是分析四种扫描仪(EinScan Pro(EP)、EinScan Pro 2X Plus(EP+)(Shining 3D Tech. Co.,Ltd.杭州,中国)、iPhone X(IPX)(Apple Store,Cupertino,CA,美国)和 Planmeca ProMax 3D Mid(PM)(Planmeca USA,Inc. IL,美国))获取的面部扫描,并将从各种扫描仪获取的扫描与对照(通过游标卡尺测量)进行比较。这应该有助于确定用于面部扫描的合适扫描仪。使用 Rhinoceros 3D 建模软件(Rhino,Robert McNeel and Associates for Windows,华盛顿特区,美国)创建和打印主面部模型,使用 200 微米的分辨率在 x、y 和 z 轴上,并在 Rhinoceros 3D 建模软件中设计。根据制造商的建议,使用四种扫描仪(Shining 3D Tech. Co.,Ltd.杭州,中国的 EinScan Pro、Shining 3D Tech. Co.,Ltd.杭州,中国的 EinScan Pro 2X Plus、苹果商店,加利福尼亚州库比蒂诺的 iPhone X 使用 Bellus3D 面部应用程序(Bellus3D,版本 1.6.2,Bellus3D,Inc. Campbell,CA,美国)和 Planmeca ProMax 3D Mid(PM)(Planmeca USA,Inc. IL,美国))对模型进行五次 3D 扫描。扫描数据文件被保存为立体光刻(STL)文件进行测量。从 STL 文件中,使用 Rhinoceros 3D 建模软件(Rhino,Robert McNeel and Associates for Windows,华盛顿特区,美国)在计算机中创建数字面部模型。使用数字游标卡尺(Mitutoyo 150 毫米数字卡尺,Mitutoyo Co.,神奈川县,日本)在三个轴(x、y 和 z)的参考点上五次测量各种测量值,并计算平均值,用作对照。使用 Rhinoceros 3D 建模软件(Rhino,Robert McNeel and Associates for Windows,华盛顿特区,美国)在 EP、EP+、IPX 和 PM 的数字面部模型上进行测量。使用 SPSS 20 版(IBM 公司,芝加哥,美国)进行描述性统计。使用 Scheffe 后进行单向方差分析,以分析对照与扫描(EP、EP+、IPX 和 PM)之间的差异。显著水平设定为 = 0.05。EP+ 显示出最高的准确性。EP 显示出中等的准确性和一些较小的准确性(长度可达 10 毫米),但 IPX 和 PM 显示出最小的准确性。EP+ 在测量 2 毫米的深度(直径 6 毫米)方面显示出准确性。所有其他扫描仪(EP、IPX 和 PM)在测量深度方面的准确性都较低。最后,光学扫描的准确性取决于每个扫描仪使用的技术。建议使用 EP+ 进行面部扫描。