Suppr超能文献

利用集合模型平均技术,在全美范围内以高时空分辨率评估 NO 浓度和模型不确定性。

Assessing NO Concentration and Model Uncertainty with High Spatiotemporal Resolution across the Contiguous United States Using Ensemble Model Averaging.

机构信息

Research Center for Public Health , Tsinghua University , Beijing , China , 100084.

Department of Environmental Health , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02215 , United States.

出版信息

Environ Sci Technol. 2020 Feb 4;54(3):1372-1384. doi: 10.1021/acs.est.9b03358. Epub 2020 Jan 14.

Abstract

NO is a combustion byproduct that has been associated with multiple adverse health outcomes. To assess NO levels with high accuracy, we propose the use of an ensemble model to integrate multiple machine learning algorithms, including neural network, random forest, and gradient boosting, with a variety of predictor variables, including chemical transport models. This NO model covers the entire contiguous U.S. with daily predictions on 1-km-level grid cells from 2000 to 2016. The ensemble produced a cross-validated R of 0.788 overall, a spatial R of 0.844, and a temporal R of 0.729. The relationship between daily monitored and predicted NO is almost linear. We also estimated the associated monthly uncertainty level for the predictions and address-specific NO levels. This NO estimation has a very high spatiotemporal resolution and allows the examination of the health effects of NO in unmonitored areas. We found the highest NO levels along highways and in cities. We also observed that nationwide NO levels declined in early years and stagnated after 2007, in contrast to the trend at monitoring sites in urban areas, where the decline continued. Our research indicates that the integration of different predictor variables and fitting algorithms can achieve an improved air pollution modeling framework.

摘要

NO 是一种燃烧副产物,与多种不良健康后果有关。为了更准确地评估 NO 水平,我们建议使用集成模型来整合多种机器学习算法,包括神经网络、随机森林和梯度提升,以及多种预测变量,包括化学输送模型。该 NO 模型涵盖了整个美国大陆,对 2000 年至 2016 年期间每天的 1 公里格网单元进行预测。集成模型的整体交叉验证 R 为 0.788,空间 R 为 0.844,时间 R 为 0.729。每日监测和预测的 NO 之间的关系几乎是线性的。我们还估计了预测的相关月度不确定性水平,并解决了特定的 NO 水平问题。这种 NO 估计具有非常高的时空分辨率,可以检查未监测地区的 NO 对健康的影响。我们发现高速公路沿线和城市中 NO 水平最高。我们还观察到,全国范围内的 NO 水平在早期下降,到 2007 年后趋于停滞,与城市地区监测点的下降趋势形成对比,城市地区的下降趋势仍在继续。我们的研究表明,整合不同的预测变量和拟合算法可以实现改进的空气污染建模框架。

相似文献

2
An ensemble-based model of PM concentration across the contiguous United States with high spatiotemporal resolution.
Environ Int. 2019 Sep;130:104909. doi: 10.1016/j.envint.2019.104909. Epub 2019 Jul 1.
4
A multi-resolution ensemble model of three decision-tree-based algorithms to predict daily NO concentration in France 2005-2022.
Environ Res. 2024 Sep 15;257:119241. doi: 10.1016/j.envres.2024.119241. Epub 2024 May 27.
5
Estimating 2013-2019 NO exposure with high spatiotemporal resolution in China using an ensemble model.
Environ Pollut. 2022 Jan 1;292(Pt A):118285. doi: 10.1016/j.envpol.2021.118285. Epub 2021 Oct 8.
7
An Ensemble Learning Approach for Estimating High Spatiotemporal Resolution of Ground-Level Ozone in the Contiguous United States.
Environ Sci Technol. 2020 Sep 15;54(18):11037-11047. doi: 10.1021/acs.est.0c01791. Epub 2020 Sep 1.

引用本文的文献

2
Exposure to outdoor air pollution, wildfires, and cancer survival in the United States.
Cancer Epidemiol. 2025 Jul 29;98:102899. doi: 10.1016/j.canep.2025.102899.
3
Outdoor Air Pollution Is Related to Amygdala Subregion Volume and Apportionment in Early Adolescence.
Biol Psychiatry Glob Open Sci. 2025 Jun 3;5(5):100544. doi: 10.1016/j.bpsgos.2025.100544. eCollection 2025 Sep.
4
Disparities in the association of ambient air pollution with childhood asthma incidence in the ECHO consortium: A US-wide multi-cohort study.
Environ Epidemiol. 2025 Jun 11;9(4):e398. doi: 10.1097/EE9.0000000000000398. eCollection 2025 Aug.
7
Association of social and environmental exposures at the neighborhood level with child brain volume.
Environ Int. 2025 Jul;201:109576. doi: 10.1016/j.envint.2025.109576. Epub 2025 Jun 2.
9
Extreme heat and hospital admissions in older adults: A small-area analysis in the Greater Boston metropolitan area.
Environ Epidemiol. 2025 May 6;9(3):e395. doi: 10.1097/EE9.0000000000000395. eCollection 2025 Jun.
10
Causal Concentration-Response Modeling with Continuous Curves and Exposure Error Correction: and Mortality in the Medicare Cohort.
Environ Health Perspect. 2025 Jun;133(6):67007. doi: 10.1289/EHP15238. Epub 2025 Jun 10.

本文引用的文献

2
An ensemble-based model of PM concentration across the contiguous United States with high spatiotemporal resolution.
Environ Int. 2019 Sep;130:104909. doi: 10.1016/j.envint.2019.104909. Epub 2019 Jul 1.
3
Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6641-6646. doi: 10.1073/pnas.1810774116. Epub 2019 Mar 18.
4
Spatiotemporally mapping of the relationship between NO pollution and urbanization for a megacity in Southwest China during 2005-2016.
Chemosphere. 2019 Apr;220:155-162. doi: 10.1016/j.chemosphere.2018.12.095. Epub 2018 Dec 12.
5
National PM and NO exposure models for China based on land use regression, satellite measurements, and universal kriging.
Sci Total Environ. 2019 Mar 10;655:423-433. doi: 10.1016/j.scitotenv.2018.11.125. Epub 2018 Nov 12.
6
Spatial PM, NO, O and BC models for Western Europe - Evaluation of spatiotemporal stability.
Environ Int. 2018 Nov;120:81-92. doi: 10.1016/j.envint.2018.07.036. Epub 2018 Jul 31.
7
Comparison of land use regression models for NO based on routine and campaign monitoring data from an urban area of Japan.
Sci Total Environ. 2018 Aug 1;631-632:1029-1037. doi: 10.1016/j.scitotenv.2018.02.334. Epub 2018 Mar 16.
8
Spatiotemporal land use random forest model for estimating metropolitan NO exposure in Japan.
Sci Total Environ. 2018 Sep 1;634:1269-1277. doi: 10.1016/j.scitotenv.2018.03.324. Epub 2018 Apr 18.
10
Satellite-Based Estimates of Daily NO Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model.
Environ Sci Technol. 2018 Apr 3;52(7):4180-4189. doi: 10.1021/acs.est.7b05669. Epub 2018 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验