Research Center for Public Health , Tsinghua University , Beijing , China , 100084.
Department of Environmental Health , Harvard T.H. Chan School of Public Heath , Boston , Massachusetts 02215 , United States.
Environ Sci Technol. 2020 Feb 4;54(3):1372-1384. doi: 10.1021/acs.est.9b03358. Epub 2020 Jan 14.
NO is a combustion byproduct that has been associated with multiple adverse health outcomes. To assess NO levels with high accuracy, we propose the use of an ensemble model to integrate multiple machine learning algorithms, including neural network, random forest, and gradient boosting, with a variety of predictor variables, including chemical transport models. This NO model covers the entire contiguous U.S. with daily predictions on 1-km-level grid cells from 2000 to 2016. The ensemble produced a cross-validated R of 0.788 overall, a spatial R of 0.844, and a temporal R of 0.729. The relationship between daily monitored and predicted NO is almost linear. We also estimated the associated monthly uncertainty level for the predictions and address-specific NO levels. This NO estimation has a very high spatiotemporal resolution and allows the examination of the health effects of NO in unmonitored areas. We found the highest NO levels along highways and in cities. We also observed that nationwide NO levels declined in early years and stagnated after 2007, in contrast to the trend at monitoring sites in urban areas, where the decline continued. Our research indicates that the integration of different predictor variables and fitting algorithms can achieve an improved air pollution modeling framework.
NO 是一种燃烧副产物,与多种不良健康后果有关。为了更准确地评估 NO 水平,我们建议使用集成模型来整合多种机器学习算法,包括神经网络、随机森林和梯度提升,以及多种预测变量,包括化学输送模型。该 NO 模型涵盖了整个美国大陆,对 2000 年至 2016 年期间每天的 1 公里格网单元进行预测。集成模型的整体交叉验证 R 为 0.788,空间 R 为 0.844,时间 R 为 0.729。每日监测和预测的 NO 之间的关系几乎是线性的。我们还估计了预测的相关月度不确定性水平,并解决了特定的 NO 水平问题。这种 NO 估计具有非常高的时空分辨率,可以检查未监测地区的 NO 对健康的影响。我们发现高速公路沿线和城市中 NO 水平最高。我们还观察到,全国范围内的 NO 水平在早期下降,到 2007 年后趋于停滞,与城市地区监测点的下降趋势形成对比,城市地区的下降趋势仍在继续。我们的研究表明,整合不同的预测变量和拟合算法可以实现改进的空气污染建模框架。