Winter Robin, Montanari Floriane, Steffen Andreas, Briem Hans, Noé Frank, Clevert Djork-Arné
Department of Digital Technologies , Bayer AG , Berlin , Germany . Email:
Department of Mathematics and Computer Science , Freie Universität Berlin , Berlin , Germany.
Chem Sci. 2019 Jul 8;10(34):8016-8024. doi: 10.1039/c9sc01928f. eCollection 2019 Sep 14.
One of the main challenges in small molecule drug discovery is finding novel chemical compounds with desirable properties. In this work, we propose a novel method that combines prediction of molecular properties such as biological activity or pharmacokinetics with an optimization algorithm, namely Particle Swarm Optimization. Our method takes a starting compound as input and proposes new molecules with more desirable (predicted) properties. It navigates a machine-learned continuous representation of a drug-like chemical space guided by a defined objective function. The objective function combines multiple prediction models, defined desirability ranges and substructure constraints. We demonstrate that our proposed method is able to consistently find more desirable molecules for the studied tasks in relatively short time. We hope that our method can support medicinal chemists in accelerating and improving the lead optimization process.
小分子药物发现中的主要挑战之一是找到具有理想特性的新型化合物。在这项工作中,我们提出了一种新颖的方法,该方法将诸如生物活性或药代动力学等分子特性的预测与一种优化算法(即粒子群优化算法)相结合。我们的方法以起始化合物作为输入,并提出具有更理想(预测)特性的新分子。它在由定义的目标函数引导的类药物化学空间的机器学习连续表示中进行导航。该目标函数结合了多个预测模型、定义的期望范围和子结构约束。我们证明,我们提出的方法能够在相对较短的时间内持续为所研究的任务找到更理想的分子。我们希望我们的方法能够支持药物化学家加速和改进先导优化过程。