Suppr超能文献

利用 RegGAN 提升食管癌自适应放疗中锥形束 CT 图像质量至 CT 水平。

Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy.

机构信息

Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.

Institute of Modern Physics, Fudan University, Shanghai, China.

出版信息

Strahlenther Onkol. 2023 May;199(5):485-497. doi: 10.1007/s00066-022-02039-5. Epub 2023 Jan 23.

Abstract

OBJECTIVE

This study aimed to improve the image quality and CT Hounsfield unit accuracy of daily cone-beam computed tomography (CBCT) using registration generative adversarial networks (RegGAN) and apply synthetic CT (sCT) images to dose calculations in radiotherapy.

METHODS

The CBCT/planning CT images of 150 esophageal cancer patients undergoing radiotherapy were used for training (120 patients) and testing (30 patients). An unsupervised deep-learning method, the 2.5D RegGAN model with an adaptively trained registration network, was proposed, through which sCT images were generated. The quality of deep-learning-generated sCT images was quantitatively compared to the reference deformed CT (dCT) image using mean absolute error (MAE), root mean square error (RMSE) of Hounsfield units (HU), and peak signal-to-noise ratio (PSNR). The dose calculation accuracy was further evaluated for esophageal cancer radiotherapy plans, and the same plans were calculated on dCT, CBCT, and sCT images.

RESULTS

The quality of sCT images produced by RegGAN was significantly improved compared to the original CBCT images. ReGAN achieved image quality in the testing patients with MAE sCT vs. CBCT: 43.7 ± 4.8 vs. 80.1 ± 9.1; RMSE sCT vs. CBCT: 67.2 ± 12.4 vs. 124.2 ± 21.8; and PSNR sCT vs. CBCT: 27.9 ± 5.6 vs. 21.3 ± 4.2. The sCT images generated by the RegGAN model showed superior accuracy on dose calculation, with higher gamma passing rates (93.3 ± 4.4, 90.4 ± 5.2, and 84.3 ± 6.6) compared to original CBCT images (89.6 ± 5.7, 85.7 ± 6.9, and 72.5 ± 12.5) under the criteria of 3 mm/3%, 2 mm/2%, and 1 mm/1%, respectively.

CONCLUSION

The proposed deep-learning RegGAN model seems promising for generation of high-quality sCT images from stand-alone thoracic CBCT images in an efficient way and thus has the potential to support CBCT-based esophageal cancer adaptive radiotherapy.

摘要

目的

本研究旨在通过注册生成对抗网络(RegGAN)提高日常锥形束 CT(CBCT)的图像质量和 CT 亨氏单位准确性,并将合成 CT(sCT)图像应用于放射治疗中的剂量计算。

方法

使用 150 例接受放射治疗的食管癌患者的 CBCT/计划 CT 图像进行训练(120 例患者)和测试(30 例患者)。提出了一种基于无监督深度学习的 2.5D RegGAN 模型,该模型具有自适应训练的配准网络,可生成 sCT 图像。通过均方误差(MAE)、亨氏单位(HU)均方根误差(RMSE)和峰值信噪比(PSNR),定量比较了深度学习生成的 sCT 图像与参考变形 CT(dCT)图像的质量。进一步评估了食管癌放射治疗计划的剂量计算准确性,并在 dCT、CBCT 和 sCT 图像上计算了相同的计划。

结果

与原始 CBCT 图像相比,RegGAN 生成的 sCT 图像质量显著提高。在测试患者中,RegGAN 实现了图像质量,MAE sCT 与 CBCT 相比:43.7±4.8 与 80.1±9.1;RMSE sCT 与 CBCT 相比:67.2±12.4 与 124.2±21.8;PSNR sCT 与 CBCT 相比:27.9±5.6 与 21.3±4.2。RegGAN 模型生成的 sCT 图像在剂量计算上具有更高的准确性,与原始 CBCT 图像相比,更高的伽马通过率(分别为 93.3±4.4、90.4±5.2 和 84.3±6.6)在 3mm/3%、2mm/2%和 1mm/1%的标准下,分别为 89.6±5.7、85.7±6.9 和 72.5±12.5。

结论

提出的深度学习 RegGAN 模型似乎有望高效地从独立的胸部 CBCT 图像生成高质量的 sCT 图像,因此有可能支持基于 CBCT 的食管癌自适应放射治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad1/10133081/03a79f62c2ae/66_2022_2039_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验