Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
J R Soc Interface. 2024 Jul;21(216):20230682. doi: 10.1098/rsif.2023.0682. Epub 2024 Jul 31.
Monitoring disease progression often involves tracking biomarker measurements over time. Joint models (JMs) for longitudinal and survival data provide a framework to explore the relationship between time-varying biomarkers and patients' event outcomes, offering the potential for personalized survival predictions. In this article, we introduce the linear state space dynamic survival model for handling longitudinal and survival data. This model enhances the traditional linear Gaussian state space model by including survival data. It differs from the conventional JMs by offering an alternative interpretation via differential or difference equations, eliminating the need for creating a design matrix. To showcase the model's effectiveness, we conduct a simulation case study, emphasizing its performance under conditions of limited observed measurements. We also apply the proposed model to a dataset of pulmonary arterial hypertension patients, demonstrating its potential for enhanced survival predictions when compared with conventional risk scores.
监测疾病进展通常涉及随时间跟踪生物标志物测量。纵向和生存数据的联合模型 (JM) 为探索时变生物标志物与患者事件结局之间的关系提供了一个框架,为个性化生存预测提供了潜力。在本文中,我们引入了用于处理纵向和生存数据的线性状态空间动态生存模型。该模型通过包含生存数据来增强传统的线性高斯状态空间模型。它通过使用微分或差分方程提供了一种替代解释,与常规 JM 不同,无需创建设计矩阵。为了展示模型的有效性,我们进行了一个模拟案例研究,强调了在观察测量有限的情况下的性能。我们还将提出的模型应用于一组肺动脉高压患者的数据,表明与常规风险评分相比,它在增强生存预测方面具有潜力。