Suppr超能文献

深度学习地方性鼻咽癌的病理微观特征:个体化诱导化疗的预后价值和潜在作用。

Deep learning pathological microscopic features in endemic nasopharyngeal cancer: Prognostic value and protentional role for individual induction chemotherapy.

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.

Department of nasopharyngeal carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, Guangdong, China.

出版信息

Cancer Med. 2020 Feb;9(4):1298-1306. doi: 10.1002/cam4.2802. Epub 2019 Dec 20.

Abstract

BACKGROUND

To explore the prognostic value and the role for treatment decision of pathological microscopic features in patients with nasopharyngeal carcinoma (NPC) using the method of deep learning.

METHODS

The pathological microscopic features were extracted using the software QuPath (version 0.1.3. Queen's University) in the training cohort (Guangzhou training cohort, n = 843). We used the neural network DeepSurv to analyze the pathological microscopic features (DSPMF) and then classified patients into high-risk and low-risk groups through the time-dependent receiver operating characteristic (ROC). The prognosis accuracy of the pathological feature was validated in a validation cohort (n = 212). The primary endpoint was progression-free survival (PFS).

RESULTS

We found 429 pathological microscopic features in the H&E image. Patients with high-risk scores in the training cohort had shorter 5-year PFS (HR 10.03, 6.06-16.61; P < .0001). The DSPMF (C-index: 0.723) had the higher C-index than the EBV DNA (C-index: 0.612) copies and the N stage (C-index: 0.593). Furthermore, induction chemotherapy (ICT) plus concomitant chemoradiotherapy (CCRT) had better 5-year PFS to those received CCRT (P < .0001) in the high-risk group.

CONCLUSION

The DSPMF is a reliable prognostic tool for survival risk in patients with NPC and might be able to guide the treatment decision.

摘要

背景

利用深度学习方法探讨鼻咽癌(NPC)患者病理微观特征的预后价值及治疗决策作用。

方法

在训练队列(广州训练队列,n=843)中使用 QuPath(版本 0.1.3. Queen's University)软件提取病理微观特征。我们使用神经网络 DeepSurv 分析病理微观特征(DSPMF),然后通过时间依赖性接收器工作特征(ROC)将患者分为高危组和低危组。在验证队列(n=212)中验证病理特征的预后准确性。主要终点是无进展生存期(PFS)。

结果

在 H&E 图像中发现了 429 个病理微观特征。训练队列中高危评分患者的 5 年 PFS 更短(HR 10.03,6.06-16.61;P<.0001)。DSPMF(C 指数:0.723)的 C 指数高于 EBV DNA(C 指数:0.612)拷贝数和 N 分期(C 指数:0.593)。此外,高危组中接受诱导化疗(ICT)加同期放化疗(CCRT)的患者 5 年 PFS 优于仅接受 CCRT 的患者(P<.0001)。

结论

DSPMF 是预测 NPC 患者生存风险的可靠工具,可能有助于指导治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c4/7013063/544875caf52a/CAM4-9-1298-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验