Department of Software Engineering, South China University of Technology (SCUT), Guangzhou 510006, China.
Sensors (Basel). 2019 Dec 18;20(1):6. doi: 10.3390/s20010006.
Vibration sensing data is an important resource for mechanical fault prediction, which is widely used in the industrial sector. Artificial neural networks (ANNs) are important tools for classifying vibration sensing data. However, their basic structures and hyperparameters must be manually adjusted, which results in the prediction accuracy easily falling into the local optimum. For data with high levels of uncertainty, it is difficult for an ANN to obtain correct prediction results. Therefore, we propose a multifeature fusion model based on Dempster-Shafer evidence theory combined with a particle swarm optimization algorithm and artificial neural network (PSO-ANN). The model first used the particle swarm optimization algorithm to optimize the structure and hyperparameters of the ANN, thereby improving its prediction accuracy. Then, the prediction error data of the multifeature fusion using a PSO-ANN is repredicted using multiple PSO-ANNs with different single feature training to obtain new prediction results. Finally, the Dempster-Shafer evidence theory was applied to the decision-level fusion of the new prediction results preprocessed with prediction accuracy and belief entropy, thus improving the model's ability to process uncertain data. The experimental results indicated that compared to the K-nearest neighbor method, support vector machine, and long short-term memory neural networks, the proposed model can effectively improve the accuracy of fault prediction.
振动传感数据是机械故障预测的重要资源,在工业领域得到了广泛应用。人工神经网络(ANNs)是对振动传感数据进行分类的重要工具。但是,它们的基本结构和超参数必须手动调整,这导致预测精度容易陷入局部最优。对于不确定性水平较高的数据,ANN 很难获得正确的预测结果。因此,我们提出了一种基于 Dempster-Shafer 证据理论的多特征融合模型,结合粒子群优化算法和人工神经网络(PSO-ANN)。该模型首先使用粒子群优化算法优化 ANN 的结构和超参数,从而提高其预测精度。然后,使用多个具有不同单特征训练的 PSO-ANN 对使用 PSO-ANN 进行多特征融合的预测误差数据进行重新预测,以获得新的预测结果。最后,应用 Dempster-Shafer 证据理论对经过预测精度和置信熵预处理的新预测结果进行决策级融合,从而提高模型处理不确定数据的能力。实验结果表明,与 K-最近邻方法、支持向量机和长短时记忆神经网络相比,所提出的模型可以有效提高故障预测的准确性。