Suppr超能文献

石墨相氮化碳掺杂铜锰合金作为超级电容器中用于能量存储的高性能电极材料

Graphitic Carbon Nitride Doped Copper-Manganese Alloy as High-Performance Electrode Material in Supercapacitor for Energy Storage.

作者信息

Siwal Samarjeet Singh, Zhang Qibo, Sun Changbin, Thakur Vijay Kumar

机构信息

Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.

State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming 650093, China.

出版信息

Nanomaterials (Basel). 2019 Dec 18;10(1):2. doi: 10.3390/nano10010002.

Abstract

Here, we report the synthesis of copper-manganese alloy (CuMnO) using graphitic carbon nitride (gCN) as a novel support material. The successful formation of CuMnO-gCN was confirmed through spectroscopic, optical, and other characterization techniques. We have applied this catalyst as the energy storage material in the alkaline media and it has shown good catalytic behavior in supercapacitor applications. The CuMnO-gCN demonstrates outstanding electrocapacitive performance, having high capacitance (817.85 A·g) and well-cycling stability (1000 cycles) when used as a working electrode material for supercapacitor applications. For comparison, we have also used the gCN and CuO-gCN for supercapacitor applications. This study proposes a simple path for the extensive construction of self-attaining double metal alloy with control size and uniformity in high-performance energy-storing materials.

摘要

在此,我们报道了以石墨相氮化碳(gCN)作为新型载体材料合成铜锰合金(CuMnO)的过程。通过光谱、光学和其他表征技术证实了CuMnO-gCN的成功形成。我们已将这种催化剂用作碱性介质中的储能材料,并且它在超级电容器应用中表现出良好的催化性能。当用作超级电容器应用的工作电极材料时,CuMnO-gCN表现出出色的电容性能,具有高电容(817.85 A·g)和良好的循环稳定性(1000次循环)。为作比较,我们还将gCN和CuO-gCN用于超级电容器应用。本研究为在高性能储能材料中广泛构建具有可控尺寸和均匀性的自组装双金属合金提出了一条简单途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f281/7023178/5accc29dd75e/nanomaterials-10-00002-g001.jpg

相似文献

2
Ionic liquid directed construction of foam-like mesoporous boron-doped graphitic carbon nitride electrode for high-performance supercapacitor.
J Colloid Interface Sci. 2018 Dec 15;532:261-271. doi: 10.1016/j.jcis.2018.07.135. Epub 2018 Jul 31.
5
Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
ACS Appl Mater Interfaces. 2013 Mar;5(6):2241-8. doi: 10.1021/am400001g. Epub 2013 Mar 6.
9
Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability.
ACS Appl Mater Interfaces. 2018 Jul 11;10(27):23063-23073. doi: 10.1021/acsami.8b04502. Epub 2018 Jun 29.

引用本文的文献

本文引用的文献

1
Hydrothermally Tailored Three-Dimensional Ni-V Layered Double Hydroxide Nanosheets as High-Performance Hybrid Supercapacitor Applications.
ACS Omega. 2019 Feb 14;4(2):3257-3267. doi: 10.1021/acsomega.8b03618. eCollection 2019 Feb 28.
2
Ionic liquid directed construction of foam-like mesoporous boron-doped graphitic carbon nitride electrode for high-performance supercapacitor.
J Colloid Interface Sci. 2018 Dec 15;532:261-271. doi: 10.1016/j.jcis.2018.07.135. Epub 2018 Jul 31.
3
Unusual Na Ion Intercalation/Deintercalation in Metal-Rich CuS for Na-Ion Batteries.
ACS Nano. 2018 Mar 27;12(3):2827-2837. doi: 10.1021/acsnano.8b00118. Epub 2018 Mar 9.
4
Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.
ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40360-40368. doi: 10.1021/acsami.7b14191. Epub 2017 Nov 7.
5
Carbon nitrides: synthesis and characterization of a new class of functional materials.
Phys Chem Chem Phys. 2017 Jun 21;19(24):15613-15638. doi: 10.1039/c7cp02711g.
6
Mesoporous carbon nitrides: synthesis, functionalization, and applications.
Chem Soc Rev. 2017 Jan 3;46(1):72-101. doi: 10.1039/c6cs00532b.
7
Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires.
Chem Commun (Camb). 2016 May 7;52(37):6296-9. doi: 10.1039/c6cc01139j. Epub 2016 Apr 18.
8
Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction.
Chem Commun (Camb). 2015 Jul 25;51(58):11599-602. doi: 10.1039/c5cc03155a. Epub 2015 Jun 22.
9
Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
Chemistry. 2014 Oct 20;20(43):13838-52. doi: 10.1002/chem.201403649. Epub 2014 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验