Suto Hirofumi, Nagasawa Tazumi, Kanao Taro, Yamada Kenichiro, Mizushima Koichi
Corporate Research and Development Center, Toshiba Corporation, 1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan.
Sci Rep. 2019 Dec 20;9(1):19543. doi: 10.1038/s41598-019-56082-x.
Injection of pure spin current using a nonlocal geometry is a promising method for controlling magnetization in spintronic devices from the viewpoints of increasing freedom in device structure and avoiding problems related to charge current. Here, we report an experimental demonstration of magnetization switching of a perpendicular magnetic nanodot induced by vertical injection of pure spin current from a spin polarizer with perpendicular magnetization. In comparison with direct spin injection, the current amplitude required for magnetization switching is of the same order and shows smaller asymmetry between parallel-to-antiparallel and antiparallel-to-parallel switching. Simulation of spin accumulation reveals that, in the case of nonlocal spin injection, the spin torque is symmetric between the parallel and antiparallel configuration because current flows through only the spin polarizer, not the magnetic nanodot. This characteristic of nonlocal spin injection is the origin of the smaller asymmetry of the switching current and can be advantageous in spintronic applications.
从增加器件结构的自由度以及避免与电荷电流相关问题的角度来看,利用非局域几何结构注入纯自旋电流是一种在自旋电子器件中控制磁化的有前景的方法。在此,我们报告了由具有垂直磁化的自旋极化器垂直注入纯自旋电流所诱导的垂直磁性纳米点磁化翻转的实验演示。与直接自旋注入相比,磁化翻转所需的电流幅度处于同一量级,并且在平行到反平行以及反平行到平行翻转之间显示出较小的不对称性。自旋积累的模拟表明,在非局域自旋注入的情况下,自旋扭矩在平行和反平行配置之间是对称的,因为电流仅流过自旋极化器,而不流过磁性纳米点。非局域自旋注入的这一特性是开关电流较小不对称性的根源,并且在自旋电子应用中可能具有优势。