Suppr超能文献

基于新型剪切波序列的声学模型的超声肝脂肪定量。

Ultrasonic liver steatosis quantification by a learning-based acoustic model from a novel shear wave sequence.

机构信息

Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.

Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

Biomed Eng Online. 2019 Dec 21;18(1):121. doi: 10.1186/s12938-019-0742-2.

Abstract

BACKGROUND

An efficient and accurate approach to quantify the steatosis extent of liver is important for clinical practice. For the purpose, we propose a specific designed ultrasound shear wave sequence to estimate ultrasonic and shear wave physical parameters. The utilization of the estimated quantitative parameters is then studied.

RESULTS

Shear wave attenuation, shear wave absorption, elasticity, dispersion slope and echo attenuation were simultaneously estimated and quantified from the proposed novel shear wave sequence. Then, a regression tree model was utilized to learn the connection between the space represented by all the physical parameters and the liver fat proportion. MR mDIXON quantification was used as the ground truth for liver fat quantification. Our study included a total of 60 patients. Correlation coefficient (CC) with the ground truth were applied to mainly evaluate different methods for which the corresponding values were - 0.25, - 0.26, 0.028, 0.045, 0.46 and 0.83 for shear wave attenuation, shear wave absorption, elasticity, dispersion slope, echo attenuation and the learning-based model, respectively. The original parameters were extremely outperformed by the learning-based model for which the root mean square error for liver steatosis quantification is only 4.5% that is also state-of-the-art for ultrasound application in the related field.

CONCLUSIONS

Although individual ultrasonic and shear wave parameters were not perfectly adequate for liver steatosis quantification, a promising result can be achieved by the proposed learning-based acoustic model based on them.

摘要

背景

准确有效地量化肝脏脂肪变性程度对临床实践非常重要。为此,我们提出了一种特定设计的超声剪切波序列来估计超声和剪切波物理参数。然后研究了所估计的定量参数的应用。

结果

从提出的新剪切波序列中同时估计和量化了剪切波衰减、剪切波吸收、弹性、弥散斜率和回波衰减。然后,利用回归树模型来学习所有物理参数所表示的空间与肝脂肪比例之间的关系。MR mDIXON 定量被用作肝脂肪定量的真实值。我们的研究共纳入 60 例患者。我们主要使用相关系数(CC)与真实值进行评估,相应的剪切波衰减、剪切波吸收、弹性、弥散斜率、回波衰减和基于学习的模型的 CC 值分别为-0.25、-0.26、0.028、0.045、0.46 和 0.83。原始参数在肝脂肪变性定量方面表现优于基于学习的模型,其肝脂肪变性定量的均方根误差仅为 4.5%,这在相关领域的超声应用中也是最先进的。

结论

尽管单个超声和剪切波参数并不完全适合肝脂肪变性定量,但基于它们的提出的基于学习的声学模型可以获得有希望的结果。

相似文献

1
2
Shear wave dispersion measures liver steatosis.
Ultrasound Med Biol. 2012 Feb;38(2):175-82. doi: 10.1016/j.ultrasmedbio.2011.10.019. Epub 2011 Dec 16.
3
Mouse liver dispersion for the diagnosis of early-stage Fatty liver disease: a 70-sample study.
Ultrasound Med Biol. 2014 Apr;40(4):704-13. doi: 10.1016/j.ultrasmedbio.2013.10.016. Epub 2014 Jan 10.
4
What do we know about shear wave dispersion in normal and steatotic livers?
Ultrasound Med Biol. 2015 May;41(5):1481-7. doi: 10.1016/j.ultrasmedbio.2015.01.002. Epub 2015 Feb 24.
5
Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):3-13. doi: 10.1109/TUFFC.2017.2768184.
6
In vivo Ultrafast Quantitative Ultrasound and Shear Wave Elastography Imaging on Farm-Raised Duck Livers during Force Feeding.
Ultrasound Med Biol. 2020 Jul;46(7):1715-1726. doi: 10.1016/j.ultrasmedbio.2020.03.005. Epub 2020 May 4.
7
Attenuation of Shear Waves in Normal and Steatotic Livers.
Ultrasound Med Biol. 2019 Apr;45(4):895-901. doi: 10.1016/j.ultrasmedbio.2018.12.002. Epub 2019 Jan 23.
8
A Preliminary Study of Liver Fat Quantification Using Reported Ultrasound Speed of Sound and Attenuation Parameters.
Ultrasound Med Biol. 2022 Apr;48(4):675-684. doi: 10.1016/j.ultrasmedbio.2021.12.009. Epub 2022 Jan 14.
9
Computer-aided B-mode ultrasound diagnosis of hepatic steatosis: a feasibility study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(6):1343-54. doi: 10.1109/TUFFC.2008.797.
10
The quantification of liver fat from wave speed and attenuation.
Phys Med Biol. 2021 Jul 14;66(14). doi: 10.1088/1361-6560/ac1023.

引用本文的文献

2
Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review.
Bioengineering (Basel). 2022 Dec 1;9(12):748. doi: 10.3390/bioengineering9120748.
3
Application of artificial intelligence in non-alcoholic fatty liver disease and liver fibrosis: a systematic review and meta-analysis.
Therap Adv Gastroenterol. 2021 Dec 21;14:17562848211062807. doi: 10.1177/17562848211062807. eCollection 2021.
4
High precision localization of pulmonary nodules on chest CT utilizing axial slice number labels.
BMC Med Imaging. 2021 Apr 9;21(1):66. doi: 10.1186/s12880-021-00594-4.

本文引用的文献

1
Effect of region of interest on ADC and interobserver variability in thyroid nodules.
BMC Med Imaging. 2019 Jul 12;19(1):55. doi: 10.1186/s12880-019-0357-x.
2
Image reconstruction utilizing median filtering applied to elastography.
Biomed Eng Online. 2019 Mar 12;18(1):22. doi: 10.1186/s12938-019-0641-6.
3
Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients.
Phys Med Biol. 2017 Jan 21;62(2):484-500. doi: 10.1088/1361-6560/aa4f6f. Epub 2016 Dec 21.
4
EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease.
J Hepatol. 2016 Jun;64(6):1388-402. doi: 10.1016/j.jhep.2015.11.004. Epub 2016 Apr 7.
7
Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and Quantification of Liver Fat Using a New Quantitative Ultrasound Technique.
Clin Gastroenterol Hepatol. 2015 Jul;13(7):1337-1345.e6. doi: 10.1016/j.cgh.2014.11.027. Epub 2014 Dec 3.
8
Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography.
J Hepatol. 2015 Feb;62(2):317-24. doi: 10.1016/j.jhep.2014.09.020. Epub 2014 Sep 22.
9
Evaluation of fatty proportion in fatty liver using least squares method with constraints.
Biomed Mater Eng. 2014;24(6):2811-20. doi: 10.3233/BME-141099.
10
Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients.
World J Gastroenterol. 2014 Apr 28;20(16):4702-11. doi: 10.3748/wjg.v20.i16.4702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验