Suppr超能文献

具有反馈的进化人工神经网络。

Evolving artificial neural networks with feedback.

机构信息

Third Institute of Physics, Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Friedrich-Hund Platz 1, 37077 Göttingen, Germany.

Third Institute of Physics, Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Friedrich-Hund Platz 1, 37077 Göttingen, Germany.

出版信息

Neural Netw. 2020 Mar;123:153-162. doi: 10.1016/j.neunet.2019.12.004. Epub 2019 Dec 14.

Abstract

Neural networks in the brain are dominated by sometimes more than 60% feedback connections, which most often have small synaptic weights. Different from this, little is known how to introduce feedback into artificial neural networks. Here we use transfer entropy in the feed-forward paths of deep networks to identify feedback candidates between the convolutional layers and determine their final synaptic weights using genetic programming. This adds about 70% more connections to these layers all with very small weights. Nonetheless performance improves substantially on different standard benchmark tasks and in different networks. To verify that this effect is generic we use 36000 configurations of small (2-10 hidden layer) conventional neural networks in a non-linear classification task and select the best performing feed-forward nets. Then we show that feedback reduces total entropy in these networks always leading to performance increase. This method may, thus, supplement standard techniques (e.g. error backprop) adding a new quality to network learning.

摘要

大脑中的神经网络主要由有时超过 60%的反馈连接组成,这些连接的突触权重通常很小。与此不同的是,人们对于如何将反馈引入人工神经网络知之甚少。在这里,我们使用深度网络前馈路径中的传递熵来识别卷积层之间的反馈候选者,并使用遗传编程来确定它们的最终突触权重。这为这些层添加了大约 70%的具有非常小权重的连接。尽管如此,在不同的标准基准任务和不同的网络中,性能都有了显著提高。为了验证这种效果是普遍存在的,我们在非线性分类任务中使用了 36000 个小(2-10 个隐藏层)传统神经网络的配置,并选择了表现最佳的前馈网络。然后,我们表明反馈总是会降低这些网络中的总熵,从而导致性能提高。因此,该方法可以补充标准技术(例如误差反向传播),为网络学习增加新的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验