Suppr超能文献

真菌细胞壁上的疏水棒。

Hydrophobin Rodlets on the Fungal Cell Wall.

机构信息

Pharmacology, School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia.

School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia.

出版信息

Curr Top Microbiol Immunol. 2020;425:29-51. doi: 10.1007/82_2019_186.

Abstract

The conidia of airborne fungi are protected by a hydrophobic protein layer that coats the cell wall polysaccharides and renders the spores resistant to wetting and desiccation. A similar layer is presented on the outer surface of the aerial hyphae of some fungi. This layer serves multiple purposes, including facilitating spore dispersal, mediating the growth of hyphae into the air from moist environments, aiding host interactions in symbiotic relationships and increasing infectivity in pathogenic fungi. The layer consists of tightly packed, fibrillar structures termed "rodlets", which are approximately 10 nm in diameter, hundreds of nanometres long and grouped in fascicles. Rodlets are an extremely stable protein structure, being resistant to detergents, denaturants and alcohols and requiring strong acids for depolymerisation. They are produced through the self-assembly of small, surface-active proteins that belong to the hydrophobin protein family. These small proteins are expressed by all filamentous fungi and are characterised by a high proportion of hydrophobic residues and the presence of eight cysteine residues. Rodlets are a form of the functional amyloid fibril, where the hydrophobin monomers are held together in the rodlets by intermolecular hydrogen bonds that contribute to a stable β-sheet core.

摘要

气生真菌的分生孢子被一层疏水性蛋白质层所保护,这层蛋白质层覆盖在细胞壁多糖上,使孢子能够抵抗润湿和干燥。一些真菌的气生菌丝的外表面也存在类似的层。该层具有多种功能,包括促进孢子的分散、介导菌丝从潮湿环境中向空气中生长、促进共生关系中的宿主相互作用以及增加病原真菌的感染力。该层由紧密堆积的、纤维状的结构组成,称为“小杆”,其直径约为 10nm,长数百纳米,并成束排列。小杆是一种极其稳定的蛋白质结构,能够抵抗去污剂、变性剂和醇类,并且需要强酸才能解聚。它们是通过属于疏水蛋白家族的小表面活性蛋白的自组装产生的。这些小蛋白由所有丝状真菌表达,其特点是含有大量疏水性残基和 8 个半胱氨酸残基。小杆是功能型淀粉样纤维的一种形式,其中疏水性单体通过分子间氢键结合在一起形成稳定的β-折叠核心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验