Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Department of Computer Science, Columbia University, New York, NY, USA.
Nature. 2020 Jan;577(7790):386-391. doi: 10.1038/s41586-019-1869-9. Epub 2019 Dec 25.
The motor cortex controls skilled arm movement by sending temporal patterns of activity to lower motor centres. Local cortical dynamics are thought to shape these patterns throughout movement execution. External inputs have been implicated in setting the initial state of the motor cortex, but they may also have a pattern-generating role. Here we dissect the contribution of local dynamics and inputs to cortical pattern generation during a prehension task in mice. Perturbing cortex to an aberrant state prevented movement initiation, but after the perturbation was released, cortex either bypassed the normal initial state and immediately generated the pattern that controls reaching or failed to generate this pattern. The difference in these two outcomes was probably a result of external inputs. We directly investigated the role of inputs by inactivating the thalamus; this perturbed cortical activity and disrupted limb kinematics at any stage of the movement. Activation of thalamocortical axon terminals at different frequencies disrupted cortical activity and arm movement in a graded manner. Simultaneous recordings revealed that both thalamic activity and the current state of cortex predicted changes in cortical activity. Thus, the pattern generator for dexterous arm movement is distributed across multiple, strongly interacting brain regions.
运动皮层通过向低级运动中枢发送活动的时间模式来控制熟练的手臂运动。局部皮层动力学被认为在运动执行过程中塑造这些模式。外部输入被认为在设定运动皮层的初始状态方面起作用,但它们也可能具有产生模式的作用。在这里,我们在小鼠的抓握任务中剖析了局部动力学和输入对皮层模式产生的贡献。将皮层扰乱到异常状态会阻止运动的开始,但在扰动释放后,皮层要么绕过正常的初始状态,立即产生控制到达的模式,要么无法产生这种模式。这两种结果的差异可能是由于外部输入造成的。我们通过使丘脑失活直接研究输入的作用;这扰乱了皮层活动,并在运动的任何阶段破坏了肢体运动学。以不同频率激活丘脑皮质轴突末梢以渐进的方式扰乱皮层活动和手臂运动。同时记录显示,丘脑活动和皮层的当前状态都可以预测皮层活动的变化。因此,灵巧手臂运动的模式发生器分布在多个相互作用强烈的大脑区域。