Suppr超能文献

PI-Plat:一种基于高分辨率图像的三维重建方法,用于估计水稻花序性状的生长动态。

PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits.

作者信息

Sandhu Jaspreet, Zhu Feiyu, Paul Puneet, Gao Tian, Dhatt Balpreet K, Ge Yufeng, Staswick Paul, Yu Hongfeng, Walia Harkamal

机构信息

1Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA.

2Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, USA.

出版信息

Plant Methods. 2019 Dec 27;15:162. doi: 10.1186/s13007-019-0545-2. eCollection 2019.

Abstract

BACKGROUND

Recent advances in image-based plant phenotyping have improved our capability to study vegetative stage growth dynamics. However, more complex agronomic traits such as inflorescence architecture (IA), which predominantly contributes to grain crop yield are more challenging to quantify and hence are relatively less explored. Previous efforts to estimate inflorescence-related traits using image-based phenotyping have been limited to destructive end-point measurements. Development of non-destructive inflorescence phenotyping platforms could accelerate the discovery of the phenotypic variation with respect to inflorescence dynamics and mapping of the underlying genes regulating critical yield components.

RESULTS

The major objective of this study is to evaluate post-fertilization development and growth dynamics of inflorescence at high spatial and temporal resolution in rice. For this, we developed the anicle maging form (PI-Plat) to comprehend multi-dimensional features of IA in a non-destructive manner. We used 11 rice genotypes to capture multi-view images of primary panicle on weekly basis after the fertilization. These images were used to reconstruct a 3D point cloud of the panicle, which enabled us to extract digital traits such as voxel count and color intensity. We found that the voxel count of developing panicles is positively correlated with seed number and weight at maturity. The voxel count from developing panicles projected overall volumes that increased during the grain filling phase, wherein quantification of color intensity estimated the rate of panicle maturation. Our 3D based phenotyping solution showed superior performance compared to conventional 2D based approaches.

CONCLUSIONS

For harnessing the potential of the existing genetic resources, we need a comprehensive understanding of the genotype-to-phenotype relationship. Relatively low-cost sequencing platforms have facilitated high-throughput genotyping, while phenotyping, especially for complex traits, has posed major challenges for crop improvement. PI-Plat offers a low cost and high-resolution platform to phenotype inflorescence-related traits using 3D reconstruction-based approach. Further, the non-destructive nature of the platform facilitates analyses of the same panicle at multiple developmental time points, which can be utilized to explore the genetic variation for dynamic inflorescence traits in cereals.

摘要

背景

基于图像的植物表型分析的最新进展提高了我们研究营养生长阶段生长动态的能力。然而,更复杂的农艺性状,如对谷物产量起主要作用的花序结构(IA),量化起来更具挑战性,因此相对较少被研究。先前使用基于图像的表型分析来估计与花序相关性状的努力仅限于破坏性的终点测量。非破坏性花序表型分析平台的开发可以加速关于花序动态的表型变异的发现以及调控关键产量构成要素的潜在基因的定位。

结果

本研究的主要目标是在高空间和时间分辨率下评估水稻受精后花序的发育和生长动态。为此,我们开发了穗成像平台(PI-Plat),以非破坏性方式理解IA的多维特征。我们使用11个水稻基因型在受精后每周获取一次主穗的多视图图像。这些图像用于重建穗的三维点云,这使我们能够提取诸如体素计数和颜色强度等数字性状。我们发现发育中的穗的体素计数与成熟时的种子数量和重量呈正相关。发育中的穗的体素计数预测了在灌浆期增加的总体积,其中颜色强度的量化估计了穗成熟的速率。我们基于三维的表型分析解决方案与传统的基于二维的方法相比表现更优。

结论

为了利用现有遗传资源的潜力,我们需要全面了解基因型与表型的关系。相对低成本的测序平台促进了高通量表型分析,而表型分析,尤其是对于复杂性状,对作物改良构成了重大挑战。PI-Plat提供了一个低成本且高分辨率的平台,使用基于三维重建的方法对与花序相关的性状进行表型分析。此外,该平台的非破坏性特性便于在多个发育时间点对同一穗进行分析,这可用于探索谷物中动态花序性状的遗传变异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a783/6933716/f1477b618687/13007_2019_545_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验