Suppr超能文献

多组学方法研究阿尔茨海默病的异质性:重点综述与路线图

A multiomics approach to heterogeneity in Alzheimer's disease: focused review and roadmap.

机构信息

Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, Canada.

Université de Montréal, Montreal, Canada.

出版信息

Brain. 2020 May 1;143(5):1315-1331. doi: 10.1093/brain/awz384.

Abstract

Aetiological and clinical heterogeneity is increasingly recognized as a common characteristic of Alzheimer's disease and related dementias. This heterogeneity complicates diagnosis, treatment, and the design and testing of new drugs. An important line of research is discovery of multimodal biomarkers that will facilitate the targeting of subpopulations with homogeneous pathophysiological signatures. High-throughput 'omics' are unbiased data-driven techniques that probe the complex aetiology of Alzheimer's disease from multiple levels (e.g. network, cellular, and molecular) and thereby account for pathophysiological heterogeneity in clinical populations. This review focuses on data reduction analyses that identify complementary disease-relevant perturbations for three omics techniques: neuroimaging-based subtypes, metabolomics-derived metabolite panels, and genomics-related polygenic risk scores. Neuroimaging can track accrued neurodegeneration and other sources of network impairments, metabolomics provides a global small-molecule snapshot that is sensitive to ongoing pathological processes, and genomics characterizes relatively invariant genetic risk factors representing key pathways associated with Alzheimer's disease. Following this focused review, we present a roadmap for assembling these multiomics measurements into a diagnostic tool highly predictive of individual clinical trajectories, to further the goal of personalized medicine in Alzheimer's disease.

摘要

病因和临床异质性日益被认为是阿尔茨海默病和相关痴呆的共同特征。这种异质性使诊断、治疗以及新药的设计和测试变得复杂。一个重要的研究方向是发现多模态生物标志物,这将有助于针对具有同质病理生理特征的亚人群进行靶向治疗。高通量“组学”是一种无偏见的数据驱动技术,可从多个层面(如网络、细胞和分子)探测阿尔茨海默病的复杂病因,从而解释临床人群中的病理生理异质性。这篇综述重点介绍了数据减少分析,这些分析确定了三种组学技术的互补疾病相关扰动:基于神经影像学的亚型、代谢组学衍生的代谢物图谱以及与基因组学相关的多基因风险评分。神经影像学可以跟踪累积的神经退行性变和其他网络损伤源,代谢组学提供了对正在进行的病理过程敏感的全局小分子快照,而基因组学则描述了相对不变的遗传风险因素,这些因素代表了与阿尔茨海默病相关的关键途径。在进行了这次重点综述后,我们提出了一个路线图,将这些多组学测量组合成一个具有高度预测个体临床轨迹的诊断工具,以推进阿尔茨海默病个体化医学的目标。

相似文献

4
Integrating Omic Technologies in Alzheimer's Disease.整合组学技术于阿尔茨海默病研究中
Adv Exp Med Biol. 2017;987:177-184. doi: 10.1007/978-3-319-57379-3_16.
10
Alzheimer's disease in the omics era.组学时代的阿尔茨海默病。
Clin Biochem. 2018 Sep;59:9-16. doi: 10.1016/j.clinbiochem.2018.06.011. Epub 2018 Jun 18.

引用本文的文献

2
AI-Driven Drug Discovery: A Comprehensive Review.人工智能驱动的药物发现:全面综述。
ACS Omega. 2025 Jun 6;10(23):23889-23903. doi: 10.1021/acsomega.5c00549. eCollection 2025 Jun 17.

本文引用的文献

9
Heterogeneous patterns of brain atrophy in Alzheimer's disease.阿尔茨海默病患者大脑萎缩的异质性模式。
Neurobiol Aging. 2018 May;65:98-108. doi: 10.1016/j.neurobiolaging.2018.01.009. Epub 2018 Jan 31.
10
Application of Metabolomics in Alzheimer's Disease.代谢组学在阿尔茨海默病中的应用。
Front Neurol. 2018 Jan 12;8:719. doi: 10.3389/fneur.2017.00719. eCollection 2017.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验