Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University, Helmholtzweg 4, 07745 Jena, Germany.
PLoS One. 2019 Dec 31;14(12):e0227096. doi: 10.1371/journal.pone.0227096. eCollection 2019.
Jamin-Lebedeff (JL) polarization interference microscopy is a classical method for determining the change in the optical path of transparent tissues. Whilst a differential interference contrast (DIC) microscopy interferes an image with itself shifted by half a point spread function, the shear between the object and reference image in a JL-microscope is about half the field of view. The optical path difference (OPD) between the sample and reference region (assumed to be empty) is encoded into a color by white-light interference. From a color-table, the Michel-Levy chart, the OPD can be deduced. In cytology JL-imaging can be used as a way to determine the OPD which closely corresponds to the dry mass per area of cells in a single image. Like in other interference microscopy methods (e.g. holography), we present a phase retrieval method relying on single-shot measurements only, thus allowing real-time quantitative phase measurements. This is achieved by adding several customized 3D-printed parts (e.g. rotational polarization-filter holders) and a modern cellphone with an RGB-camera to the Jamin-Lebedeff setup, thus bringing an old microscope back to life. The algorithm is calibrated using a reference image of a known phase object (e.g. optical fiber). A gradient-descent based inverse problem generates an inverse look-up-table (LUT) which is used to convert the measured RGB signal of a phase-sample into an OPD. To account for possible ambiguities in the phase-map or phase-unwrapping artifacts we introduce a total-variation based regularization. We present results from fixed and living biological samples as well as reference samples for comparison.
贾明-勒贝德夫(JL)偏振干涉显微镜是一种用于确定透明组织光程变化的经典方法。虽然微分干涉对比(DIC)显微镜会将自身移位半个点扩散函数的图像进行干涉,但 JL 显微镜中物体和参考图像之间的剪切约为视野的一半。样品和参考区域(假设为空)之间的光程差(OPD)通过白光干涉编码为颜色。从颜色表,即 Michel-Levy 图表,可以推导出 OPD。在细胞学中,JL 成像可用于确定与单个图像中细胞的单位面积干质量密切对应的 OPD。与其他干涉显微镜方法(例如全息术)一样,我们提出了一种仅依赖单次测量的相位恢复方法,从而允许实时定量相位测量。这是通过在 Jamin-Lebedeff 设置中添加几个定制的 3D 打印部件(例如旋转偏振滤光片支架)和具有 RGB 摄像头的现代手机来实现的,从而使旧显微镜恢复了生机。该算法使用已知相位物体(例如光纤)的参考图像进行校准。基于梯度下降的逆问题生成逆查找表(LUT),用于将相位样本的测量 RGB 信号转换为 OPD。为了解决相位图中的可能歧义或相位展开伪影问题,我们引入了基于全变差的正则化。我们展示了固定和活的生物样本以及参考样本的结果以供比较。