Suppr超能文献

大数据在心血管疾病中的应用:通往精准医学之路。

The application of big data to cardiovascular disease: paths to precision medicine.

出版信息

J Clin Invest. 2020 Jan 2;130(1):29-38. doi: 10.1172/JCI129203.

Abstract

Advanced phenotyping of cardiovascular diseases has evolved with the application of high-resolution omics screening to populations enrolled in large-scale observational and clinical trials. This strategy has revealed that considerable heterogeneity exists at the genotype, endophenotype, and clinical phenotype levels in cardiovascular diseases, a feature of the most common diseases that has not been elucidated by conventional reductionism. In this discussion, we address genomic context and (endo)phenotypic heterogeneity, and examine commonly encountered cardiovascular diseases to illustrate the genotypic underpinnings of (endo)phenotypic diversity. We highlight the existing challenges in cardiovascular disease genotyping and phenotyping that can be addressed by the integration of big data and interpreted using novel analytical methodologies (network analysis). Precision cardiovascular medicine will only be broadly applied to cardiovascular patients once this comprehensive data set is subjected to unique, integrative analytical strategies that accommodate molecular and clinical heterogeneity rather than ignore or reduce it.

摘要

心血管疾病的高级表型分析随着高通量组学筛选在大规模观察性和临床试验中被应用于人群而发展。这一策略揭示了心血管疾病在基因型、中间表型和临床表型水平上存在着相当大的异质性,这是最常见疾病的特征,传统的还原论方法并没有阐明这一点。在本次讨论中,我们将讨论基因组背景和(中间)表型异质性,并研究常见的心血管疾病,以阐明(中间)表型多样性的基因型基础。我们强调了心血管疾病基因分型和表型分析中存在的挑战,可以通过整合大数据并使用新的分析方法(网络分析)进行解释来解决。只有当这个综合数据集经过独特的、综合的分析策略处理后,这些策略可以适应分子和临床异质性,而不是忽略或简化它们,才能将精准心血管医学广泛应用于心血管患者。

相似文献

2
3
Enabling phenotypic big data with PheNorm.利用 PheNorm 实现表型大数据。
J Am Med Inform Assoc. 2018 Jan 1;25(1):54-60. doi: 10.1093/jamia/ocx111.
4
Integrative Analysis of Omics Big Data.组学大数据的综合分析
Methods Mol Biol. 2018;1754:109-135. doi: 10.1007/978-1-4939-7717-8_7.
6
Future Physicians in the Era of Precision Cardiovascular Medicine.精准心血管医学时代的未来医生。
Circulation. 2017 Oct 24;136(17):1572-1574. doi: 10.1161/CIRCULATIONAHA.117.029676.
9
How wide is the application of genetic big data in biomedicine.遗传大数据在生物医药中的应用有多广泛。
Biomed Pharmacother. 2021 Jan;133:111074. doi: 10.1016/j.biopha.2020.111074. Epub 2020 Dec 9.
10
Phenomics and Robust Multiomics Data for Cardiovascular Disease Subtyping.表型组学和稳健的多组学数据在心血管疾病亚型分类中的应用。
Arterioscler Thromb Vasc Biol. 2023 Jul;43(7):1111-1123. doi: 10.1161/ATVBAHA.122.318892. Epub 2023 May 25.

引用本文的文献

3
Molecular Study of Sudden Cardiac Death.分子水平研究心源性猝死。
Int J Mol Sci. 2024 Jun 8;25(12):6366. doi: 10.3390/ijms25126366.

本文引用的文献

2
Artificial intelligence powers digital medicine.人工智能推动数字医学发展。
NPJ Digit Med. 2018 Mar 14;1:5. doi: 10.1038/s41746-017-0012-2. eCollection 2018.
3
Promises and Pitfalls of Using Liquid Biopsy for Precision Medicine.液体活检在精准医学中的应用前景与挑战
Cancer Res. 2019 Jun 1;79(11):2798-2804. doi: 10.1158/0008-5472.CAN-18-3402. Epub 2019 May 20.
4
Next-Generation Sequencing and Emerging Technologies.下一代测序技术与新兴技术
Semin Thromb Hemost. 2019 Oct;45(7):661-673. doi: 10.1055/s-0039-1688446. Epub 2019 May 16.
6
Network Medicine in Pathobiology.网络医学在病理生物学中的应用。
Am J Pathol. 2019 Jul;189(7):1311-1326. doi: 10.1016/j.ajpath.2019.03.009. Epub 2019 Apr 20.
8
Multiscale computing for science and engineering in the era of exascale performance.大规模科学与工程计算的 exascale 时代。
Philos Trans A Math Phys Eng Sci. 2019 Apr 8;377(2142):20180144. doi: 10.1098/rsta.2018.0144.
9
Big data analytics for personalized medicine.大数据分析在个性化医疗中的应用。
Curr Opin Biotechnol. 2019 Aug;58:161-167. doi: 10.1016/j.copbio.2019.03.004. Epub 2019 Apr 6.
10
Promises, promises, and precision medicine.承诺、承诺与精准医学。
J Clin Invest. 2019 Mar 1;129(3):946-948. doi: 10.1172/JCI126119. Epub 2019 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验