Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
Sci Adv. 2019 Dec 18;5(12):eaay3771. doi: 10.1126/sciadv.aay3771. eCollection 2019 Dec.
Imaging neuromodulation with synthetic probes is an emerging technology for studying neurotransmission. However, most synthetic probes are developed through conjugation of fluorescent signal transducers to preexisting recognition moieties such as antibodies or receptors. We introduce a generic platform to evolve synthetic molecular recognition on the surface of near-infrared fluorescent single-wall carbon nanotube (SWCNT) signal transducers. We demonstrate evolution of molecular recognition toward neuromodulator serotonin generated from large libraries of ~6.9 × 10 unique ssDNA sequences conjugated to SWCNTs. This probe is reversible and produces a ~200% fluorescence enhancement upon exposure to serotonin with a = 6.3 μM, and shows selective responsivity over serotonin analogs, metabolites, and receptor-targeting drugs. Furthermore, this probe remains responsive and reversible upon repeat exposure to exogenous serotonin in the extracellular space of acute brain slices. Our results suggest that evolution of nanosensors could be generically implemented to develop other neuromodulator probes with synthetic molecular recognition.
用合成探针进行神经调节成像,是一种新兴的神经递质研究技术。然而,大多数合成探针是通过将荧光信号转导器与预存在的识别部分(如抗体或受体)缀合而开发的。我们引入了一种通用平台,以在近红外荧光单壁碳纳米管(SWCNT)信号转导器的表面上进化出合成的分子识别。我们展示了从与 SWCNT 缀合的约 6.9×10^6 独特 ssDNA 序列的大型文库中产生的神经调质血清素的分子识别的进化。该探针是可逆的,并且在暴露于血清素时产生约 200%的荧光增强,其 = 6.3 μM,并对血清素类似物、代谢物和受体靶向药物表现出选择性响应。此外,该探针在急性脑切片细胞外空间中重复暴露于外源性血清素时仍保持响应和可逆性。我们的结果表明,纳米传感器的进化可以通用地实现,以开发具有合成分子识别的其他神经调质探针。