Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Republic of Korea.
Institute of Glocal Disease Control, Konkuk University, Seoul, 05029, Republic of Korea; Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
Plant Physiol Biochem. 2020 Feb;147:313-321. doi: 10.1016/j.plaphy.2019.12.032. Epub 2019 Dec 28.
Salt stress limits crop productivity worldwide, particularly in arid and heavily irrigated regions. Salt stress causes oxidative stress, in which plant cells accumulate harmful levels of reactive oxygen species (ROS). Thioredoxins (Trxs; EC 1.8.4.8) are antioxidant proteins encoded by a ubiquitous multigene family. Arabidopsis thaliana Trx h-type proteins localize in the cytoplasm and other subcellular organelles, and function in plant responses to abiotic stresses and pathogen attack. Here, we isolated the Arabidopsis genes encoding two cytosolic h-type Trx proteins, AtTrx-h2 and AtTrx-h3 and generated transgenic oilseed rape (Brassica napus) plants overexpressing AtTrx-h2 or AtTrx-h3. Heterologous expression of AtTrx-h2 in B. napus conferred salt tolerance with plants grown on 50 mM NaCl having higher fresh weight and chlorophyll contents compared with controls in hydroponic growth system. By contrast, expression of AtTrx-h3 or the empty vector control did not improve salt tolerance. In addition, AtTrx-h2-overexpressing transgenic plants exhibited lower levels of hydrogen peroxide and higher activities of antioxidant enzymes including peroxidase, catalase, and superoxide dismutase, compared with the plants expressing the empty vector control or AtTrx-h3. These results suggest that AtTrx-h2 is a promising candidate for engineering or breeding crops with enhanced salt stress tolerance.
盐胁迫限制了全球作物的生产力,特别是在干旱和大量灌溉地区。盐胁迫会导致氧化应激,使植物细胞积累有害水平的活性氧(ROS)。硫氧还蛋白(Trx;EC 1.8.4.8)是一种抗氧化蛋白,由一个普遍存在的多基因家族编码。拟南芥 Trx h 型蛋白定位于细胞质和其他亚细胞细胞器中,在植物对非生物胁迫和病原体攻击的反应中发挥作用。在这里,我们分离出拟南芥编码两种细胞质 h 型 Trx 蛋白的基因,AtTrx-h2 和 AtTrx-h3,并生成了过表达 AtTrx-h2 或 AtTrx-h3 的转基因油菜( Brassica napus )植物。AtTrx-h2 在油菜中的异源表达赋予了耐盐性,在水培生长系统中,在 50 mM NaCl 上生长的植物具有更高的鲜重和叶绿素含量,与对照相比。相比之下,AtTrx-h3 的表达或空载体对照并没有提高耐盐性。此外,与表达空载体对照或 AtTrx-h3 的植物相比,AtTrx-h2 过表达转基因植物的过氧化氢水平较低,而过氧化物酶、过氧化氢酶和超氧化物歧化酶等抗氧化酶的活性较高。这些结果表明,AtTrx-h2 是一种很有前途的候选基因,可用于工程或培育具有增强耐盐性的作物。