Suppr超能文献

在种子成熟和萌发过程中调控α-半乳糖苷酶活性及其对棉子糖家族寡糖的影响。

Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in .

机构信息

Department of Biological Sciences, University of Calgary , Calgary, Canada.

Department of Genetic Engineering, SRM Institute of Technology , Chennai, India.

出版信息

Plant Signal Behav. 2020 Aug 2;15(8):1709707. doi: 10.1080/15592324.2019.1709707. Epub 2020 Jan 6.

Abstract

Alpha-galactosides or Raffinose Family Oligosaccharides (RFOs) are enriched in legumes and are considered as anti-nutritional factors responsible for inducing flatulence. Due to a lack of alpha-galactosidases in the stomachs of humans and other monogastric animals, these RFOs are not metabolized and are passed to the intestines to be processed by gut bacteria leading to distressing flatulence. In plants, alpha(α)-galactosides are involved in desiccation tolerance during seed maturation and act as a source of stored energy utilized by germinating seeds. The hydrolytic enzyme alpha-galactosidase (α-GAL) can break down RFOs into sucrose and galactose releasing the monosaccharide α-galactose back into the system. Through characterization of RFOs, sucrose, reducing sugars, and α-GAL activity in maturing and germinating chickpeas, we show that stored RFOs are likely required to maintain a steady-state level of reducing sugars. These reducing sugars can then be readily converted to generate energy required for the high energy-demanding germination process. Our observations indicate that RFO levels are lowest in imbibed seeds and rapidly increase post-imbibition. Both RFOs and the α-GAL activity are possibly required to maintain a steady-state level of the reducing monosaccharide sugars, starting from dry seeds all the way through post-germination, to provide the energy for increased germination vigor.

摘要

α-半乳糖苷或棉子糖家族低聚糖(RFO)富含豆类,被认为是引起胀气的抗营养因子。由于人类和其他单胃动物的胃中缺乏α-半乳糖苷酶,这些 RFO 无法代谢,而是被传递到肠道中,由肠道细菌进行处理,导致令人不适的胀气。在植物中,α-半乳糖苷参与种子成熟过程中的耐旱性,并作为萌发种子利用的储存能量来源。水解酶α-半乳糖苷酶(α-GAL)可以将 RFO 分解为蔗糖和半乳糖,将单糖α-半乳糖释放回系统中。通过对鹰嘴豆成熟和萌发过程中 RFO、蔗糖、还原糖和α-GAL 活性的特征分析,我们表明,储存的 RFO 可能需要维持还原糖的稳定水平。这些还原糖可以很容易地转化为萌发过程中所需的能量。我们的观察表明,在吸胀种子中 RFO 水平最低,吸胀后迅速增加。RFO 和α-GAL 活性可能都需要维持还原单糖的稳定水平,从干种子一直到萌发后,为增加的萌发活力提供能量。

相似文献

2
Raffinose and stachyose metabolism are not required for efficient soybean seed germination.
J Plant Physiol. 2009 Aug 15;166(12):1329-1335. doi: 10.1016/j.jplph.2009.01.008. Epub 2009 Mar 14.
3
Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage.
J Plant Physiol. 2009 Sep 1;166(13):1381-90. doi: 10.1016/j.jplph.2009.02.013. Epub 2009 Apr 8.
5
Enzymatic breakdown of raffinose oligosaccharides in pea seeds.
Planta. 2008 Jun;228(1):99-110. doi: 10.1007/s00425-008-0722-4. Epub 2008 Mar 12.
6
Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds.
J Plant Physiol. 2007 Aug;164(8):1093-6. doi: 10.1016/j.jplph.2006.10.010. Epub 2007 Jan 26.
7
Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana.
Mol Plant. 2017 Dec 4;10(12):1540-1555. doi: 10.1016/j.molp.2017.10.014. Epub 2017 Nov 7.
8
Delayed hydrolysis of Raffinose Family Oligosaccharides (RFO) affects critical germination of chickpeas.
3 Biotech. 2021 Jun;11(6):298. doi: 10.1007/s13205-021-02764-1. Epub 2021 May 26.
9
ZmAGA1 Hydrolyzes RFOs Late during the Lag Phase of Seed Germination, Shifting Sugar Metabolism toward Seed Germination Over Seed Aging Tolerance.
J Agric Food Chem. 2021 Oct 6;69(39):11606-11615. doi: 10.1021/acs.jafc.1c03677. Epub 2021 Sep 23.
10
CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits.
Int J Mol Sci. 2021 Dec 10;22(24):13285. doi: 10.3390/ijms222413285.

引用本文的文献

1
Improving Soybean Seed Sucrose Content using TILLING by Sequencing Analyses of The Soybean Sucrose Synthase Gene Family.
Front Plant Sci. 2025 Jun 25;16:1606321. doi: 10.3389/fpls.2025.1606321. eCollection 2025.
2
OsAPSE modulates non-covalent interactions between arabinogalactan protein -glycans and pectin in rice cell walls.
Front Plant Sci. 2025 May 22;16:1588802. doi: 10.3389/fpls.2025.1588802. eCollection 2025.
7
Virus-Induced Silencing Delays Tomato Fruit Ripening.
Plants (Basel). 2024 Sep 21;13(18):2650. doi: 10.3390/plants13182650.
8
Xylooligosaccharides Enhance Lettuce Root Morphogenesis and Growth Dynamics.
Plants (Basel). 2024 Jun 19;13(12):1699. doi: 10.3390/plants13121699.

本文引用的文献

1
Cell Wall Heterogeneity in Root Development of Arabidopsis.
Front Plant Sci. 2016 Aug 17;7:1242. doi: 10.3389/fpls.2016.01242. eCollection 2016.
5
Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review.
Br J Nutr. 2012 Aug;108 Suppl 1:S11-26. doi: 10.1017/S0007114512000797.
6
Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions.
Plant Cell Environ. 2012 Oct;35(10):1860-78. doi: 10.1111/j.1365-3040.2012.02522.x. Epub 2012 May 10.
8
Raffinose and stachyose metabolism are not required for efficient soybean seed germination.
J Plant Physiol. 2009 Aug 15;166(12):1329-1335. doi: 10.1016/j.jplph.2009.01.008. Epub 2009 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验