Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, 37996, USA.
Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
ISME J. 2020 Apr;14(4):959-970. doi: 10.1038/s41396-019-0579-5. Epub 2020 Jan 6.
Dichloromethane (DCM) is an anthropogenic pollutant with ozone destruction potential that is also formed naturally. Under anoxic conditions, fermentation of DCM to acetate and formate has been reported in axenic culture Dehalobacterium formicoaceticum, and to acetate, H and CO in mixed culture RM, which harbors the DCM degrader 'Candidatus Dichloromethanomonas elyunquensis'. RM cultures produced 28.1 ± 2.3 μmol of acetate from 155.6 ± 9.3 μmol DCM, far less than the one third (i.e., about 51.9 µmol) predicted based on the assumed fermentation model, and observed in cultures of Dehalobacterium formicoaceticum. Temporal metabolite analyses using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy revealed that no C-labeled acetate was formed in C-DCM-grown RM cultures, indicating acetate was not a direct product of DCM metabolism. The data were reconciled with DCM mineralization and H consumption via CO reduction to acetate and methane by homoacetogenic and methanogenic partner populations, respectively. In contrast, Dehalobacterium formicoaceticum produced C-labeled acetate and formate from C-DCM, consistent with a fermentation pathway. Free energy change calculations predicted that organisms with the mineralization pathway are the dominant DCM consumers in environments with H <100 ppmv. These findings have implications for carbon and electron flow in environments where DCM is introduced through natural production processes or anthropogenic activities.
二氯甲烷(DCM)是一种具有破坏臭氧潜能的人为污染物,同时也自然形成。在缺氧条件下,已在无菌培养的脱硫孤菌(Dehalobacterium formicoaceticum)中报道了将 DCM 发酵为乙酸盐和甲酸盐,在混合培养物 RM 中,还可以发酵为乙酸盐、H 和 CO,该混合培养物中含有 DCM 降解菌“产甲烷假单胞菌(Candidatus Dichloromethanomonas elyunquensis)”。RM 培养物从 155.6±9.3 μmol DCM 中产生了 28.1±2.3 μmol 乙酸盐,远低于基于假定发酵模型预测的三分之一(即约 51.9 μmol),也低于脱硫孤菌培养物中观察到的水平。使用气相色谱-质谱(GC-MS)和核磁共振(NMR)光谱法进行的时间代谢物分析表明,在 C-DCM 生长的 RM 培养物中没有形成 C 标记的乙酸盐,这表明乙酸盐不是 DCM 代谢的直接产物。这些数据与 DCM 矿化和 H 通过 CO 还原分别为乙酸盐和甲烷的消耗相协调,这分别由同型乙酰生成和产甲烷共生种群完成。相比之下,脱硫孤菌从 C-DCM 中产生了 C 标记的乙酸盐和甲酸盐,与发酵途径一致。自由能变化计算预测,具有矿化途径的生物体是在 H <100 ppmv 的环境中占主导地位的 DCM 消费者。这些发现对 DCM 通过自然产生过程或人为活动引入的环境中的碳和电子流动具有重要意义。