Suppr超能文献

全基因组回归中的先验信息:贝叶斯字母表回归。

Priors in whole-genome regression: the bayesian alphabet returns.

机构信息

Department of Animal Sciences, Department of Biostatistics and Medical Informatics, and Department of Dairy Science, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Genetics. 2013 Jul;194(3):573-96. doi: 10.1534/genetics.113.151753. Epub 2013 May 1.

Abstract

Whole-genome enabled prediction of complex traits has received enormous attention in animal and plant breeding and is making inroads into human and even Drosophila genetics. The term "Bayesian alphabet" denotes a growing number of letters of the alphabet used to denote various Bayesian linear regressions that differ in the priors adopted, while sharing the same sampling model. We explore the role of the prior distribution in whole-genome regression models for dissecting complex traits in what is now a standard situation with genomic data where the number of unknown parameters (p) typically exceeds sample size (n). Members of the alphabet aim to confront this overparameterization in various manners, but it is shown here that the prior is always influential, unless n ≫ p. This happens because parameters are not likelihood identified, so Bayesian learning is imperfect. Since inferences are not devoid of the influence of the prior, claims about genetic architecture from these methods should be taken with caution. However, all such procedures may deliver reasonable predictions of complex traits, provided that some parameters ("tuning knobs") are assessed via a properly conducted cross-validation. It is concluded that members of the alphabet have a room in whole-genome prediction of phenotypes, but have somewhat doubtful inferential value, at least when sample size is such that n ≪ p.

摘要

全基因组预测复杂性状在动植物育种中受到了极大的关注,并且正在深入到人类甚至果蝇遗传学领域。“贝叶斯字母表”一词表示越来越多的字母用于表示各种不同的贝叶斯线性回归,这些回归在采用的先验分布上有所不同,而共享相同的抽样模型。我们探讨了先验分布在全基因组回归模型中的作用,以剖析复杂性状,这在现在的基因组数据情况下是一种标准情况,其中未知参数(p)的数量通常超过样本量(n)。字母表中的成员旨在以各种方式应对这种超参数化,但这里表明,除非 n ≫ p,否则先验总是有影响的。这是因为参数不是似然确定的,因此贝叶斯学习是不完美的。由于推断不受先验的影响,因此应该谨慎对待这些方法得出的关于遗传结构的结论。然而,只要某些参数(“调谐旋钮”)通过适当的交叉验证进行评估,所有这些方法都可以提供复杂性状的合理预测。因此,字母表中的成员在全基因组预测表型方面有一定的空间,但至少在样本量为 n ≪ p 的情况下,它们的推断价值有些可疑。

相似文献

1
Priors in whole-genome regression: the bayesian alphabet returns.
Genetics. 2013 Jul;194(3):573-96. doi: 10.1534/genetics.113.151753. Epub 2013 May 1.
3
A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait.
Genetica. 2010 Oct;138(9-10):959-77. doi: 10.1007/s10709-010-9478-4. Epub 2010 Aug 25.
5
Genomic BLUP decoded: a look into the black box of genomic prediction.
Genetics. 2013 Jul;194(3):597-607. doi: 10.1534/genetics.113.152207. Epub 2013 May 2.
7
Additive genetic variability and the Bayesian alphabet.
Genetics. 2009 Sep;183(1):347-63. doi: 10.1534/genetics.109.103952. Epub 2009 Jul 20.
9
Genome-wide prediction of traits with different genetic architecture through efficient variable selection.
Genetics. 2013 Oct;195(2):573-87. doi: 10.1534/genetics.113.150078. Epub 2013 Aug 9.

引用本文的文献

1
Enhancing wheat genomic prediction by a hybrid kernel approach.
Front Plant Sci. 2025 Aug 1;16:1605202. doi: 10.3389/fpls.2025.1605202. eCollection 2025.
2
Genomic Prediction of Adaptation in Common Bean ( L.) × Tepary Bean ( A. Gray) Hybrids.
Int J Mol Sci. 2025 Jul 30;26(15):7370. doi: 10.3390/ijms26157370.
6
Genotype-by-environment interaction with high-dimensional environmental data: an example in pigs.
Genet Sel Evol. 2025 Jun 5;57(1):28. doi: 10.1186/s12711-025-00974-2.
7
Genomic selection: Essence, applications, and prospects.
Plant Genome. 2025 Jun;18(2):e70053. doi: 10.1002/tpg2.70053.
8
Impact of Selection Signature on Genomic Prediction and Heritability Estimation in Livestock.
Animals (Basel). 2025 May 10;15(10):1383. doi: 10.3390/ani15101383.
9
Breaking down data silos across companies to train genome-wide predictions: A feasibility study in wheat.
Plant Biotechnol J. 2025 Jul;23(7):2704-2719. doi: 10.1111/pbi.70095. Epub 2025 Apr 20.
10

本文引用的文献

1
Sensitivity to prior specification in Bayesian genome-based prediction models.
Stat Appl Genet Mol Biol. 2013 Jun;12(3):375-91. doi: 10.1515/sagmb-2012-0042.
2
A fast EM algorithm for BayesA-like prediction of genomic breeding values.
PLoS One. 2012;7(11):e49157. doi: 10.1371/journal.pone.0049157. Epub 2012 Nov 9.
3
Bayesian methods for estimating GEBVs of threshold traits.
Heredity (Edinb). 2013 Mar;110(3):213-9. doi: 10.1038/hdy.2012.65. Epub 2012 Oct 31.
4
Quantitative genetics in the genomics era.
Curr Genomics. 2012 May;13(3):196-206. doi: 10.2174/138920212800543110.
5
Multiple-trait genomic selection methods increase genetic value prediction accuracy.
Genetics. 2012 Dec;192(4):1513-22. doi: 10.1534/genetics.112.144246. Epub 2012 Oct 19.
6
A comprehensive genetic approach for improving prediction of skin cancer risk in humans.
Genetics. 2012 Dec;192(4):1493-502. doi: 10.1534/genetics.112.141705. Epub 2012 Oct 10.
7
Genome position specific priors for genomic prediction.
BMC Genomics. 2012 Oct 10;13:543. doi: 10.1186/1471-2164-13-543.
8
Prediction of expected years of life using whole-genome markers.
PLoS One. 2012;7(7):e40964. doi: 10.1371/journal.pone.0040964. Epub 2012 Jul 25.
9
Inferences from genomic models in stratified populations.
Genetics. 2012 Oct;192(2):693-704. doi: 10.1534/genetics.112.141143. Epub 2012 Jul 18.
10
Whole-genome regression and prediction methods applied to plant and animal breeding.
Genetics. 2013 Feb;193(2):327-45. doi: 10.1534/genetics.112.143313. Epub 2012 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验