Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States.
J Am Chem Soc. 2020 Jan 22;142(3):1433-1442. doi: 10.1021/jacs.9b11371. Epub 2020 Jan 8.
Protein-metal-organic frameworks (p-MOFs) are a prototypical example of how synthetic biological hybrid systems can be used to develop next-generation materials. Controlling p-MOF formation enables the design of hybrid materials with enhanced biological activity and high stability. However, such control is yet to be fully realized due to an insufficient understanding of the governing nucleation and growth mechanisms in p-MOF systems. The structural evolution of p-MOFs was probed by cryo-transmission electron microscopy, revealing nonclassical pathways via dissolution-recrystallization of highly hydrated amorphous particles and solid-state transformation of a protein-rich amorphous phase. On the basis of these data, we propose a general description of p-MOF crystallization which is best characterized by particle aggregation and colloidal theory for future synthetic strategies.
蛋白质-金属-有机骨架(p-MOFs)是一个典型的例子,说明了如何使用合成生物学混合系统来开发下一代材料。控制 p-MOF 的形成可以设计出具有增强的生物活性和高稳定性的混合材料。然而,由于对 p-MOF 系统中控制成核和生长机制的理解还不够充分,这种控制尚未完全实现。通过低温透射电子显微镜研究了 p-MOFs 的结构演变,揭示了通过高度水合无定形颗粒的溶解-再结晶和富含蛋白质的无定形相的固态转变的非经典途径。基于这些数据,我们提出了一个通用的 p-MOF 结晶描述,最好用颗粒聚集和胶体理论来描述,以便为未来的合成策略提供参考。