MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Nat Commun. 2022 Feb 17;13(1):951. doi: 10.1038/s41467-022-28615-y.
Crystallization of biomacromolecules-metal-organic frameworks (BMOFs) allows for orderly assemble of symbiotic hybrids with desirable biological and chemical functions in one voxel. The structure-activity relationship of this symbiotic crystal, however, is still blurred. Here, we directly identify the atomic-level structure of BMOFs, using the integrated differential phase contrast-scanning transmission electron microscopy, cryo-electron microscopy and x-ray absorption fine structure techniques. We discover an obvious difference in the nanoarchitecture of BMOFs under different crystallization pathways that was previously not seen. In addition, we find the nanoarchitecture significantly affects the bioactivity of the BMOFs. This work gives an important insight into the structure-activity relationship of BMOFs synthesized in different scenarios, and may act as a guide to engineer next-generation materials with excellent biological and chemical functions.
生物大分子-金属有机骨架(BMOFs)的结晶允许在一个体素中有序组装具有理想生物学和化学功能的共生杂化体。然而,这种共生晶体的结构-活性关系仍然很模糊。在这里,我们使用集成差分相位对比-扫描透射电子显微镜、冷冻电子显微镜和 X 射线吸收精细结构技术,直接确定了 BMOFs 的原子级结构。我们发现,在以前没有观察到的不同结晶途径下,BMOFs 的纳米结构有明显的差异。此外,我们发现纳米结构显著影响 BMOFs 的生物活性。这项工作深入了解了不同情况下合成的 BMOFs 的结构-活性关系,并可能为设计具有优异生物学和化学功能的下一代材料提供指导。