Hudongfeng Technology (Beijing) Co., Ltd., Sanjianfang South No.4, DREAM 2049 B05, Chaoyang District, Beijing, China.
BMC Bioinformatics. 2020 Jan 8;21(1):8. doi: 10.1186/s12859-019-3332-1.
Cell nuclei segmentation is a fundamental task in microscopy image analysis, based on which multiple biological related analysis can be performed. Although deep learning (DL) based techniques have achieved state-of-the-art performances in image segmentation tasks, these methods are usually complex and require support of powerful computing resources. In addition, it is impractical to allocate advanced computing resources to each dark- or bright-field microscopy, which is widely employed in vast clinical institutions, considering the cost of medical exams. Thus, it is essential to develop accurate DL based segmentation algorithms working with resources-constraint computing.
An enhanced, light-weighted U-Net (called U-Net+) with modified encoded branch is proposed to potentially work with low-resources computing. Through strictly controlled experiments, the average IOU and precision of U-Net+ predictions are confirmed to outperform other prevalent competing methods with 1.0% to 3.0% gain on the first stage test set of 2018 Kaggle Data Science Bowl cell nuclei segmentation contest with shorter inference time.
Our results preliminarily demonstrate the potential of proposed U-Net+ in correctly spotting microscopy cell nuclei with resources-constraint computing.
细胞核分割是基于此可以进行多个生物学相关分析的显微镜图像分析的基本任务。尽管基于深度学习 (DL) 的技术在图像分割任务中已经达到了最先进的性能,但这些方法通常很复杂,需要强大的计算资源支持。此外,考虑到医疗检查的成本,将先进的计算资源分配给广泛应用于各大临床机构的暗场或明场显微镜是不切实际的。因此,开发适用于资源受限计算的精确基于深度学习的分割算法至关重要。
提出了一种增强的轻量级 U-Net(称为 U-Net+),具有修改后的编码分支,以潜在地适用于低资源计算。通过严格控制的实验,确认 U-Net+ 的平均 IOU 和预测精度优于其他流行的竞争方法,在 2018 年 Kaggle 数据科学碗细胞核分割竞赛的第一阶段测试集中,平均 IOu 和预测精度提高了 1.0%到 3.0%,推断时间更短。
我们的结果初步证明了所提出的 U-Net+在使用资源受限计算正确识别显微镜细胞核方面的潜力。