Safarov Furkat, Khojamuratova Ugiloy, Komoliddin Misirov, Kurbanov Ziyat, Tamara Abdibayeva, Nizamjon Ishonkulov, Muksimova Shakhnoza, Cho Young Im
Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461701, Republic of Korea.
Department of Computer Science, CUNY Queens College, 65-30 Kissena Blvd Flushing, New York, NY 11374, USA.
Diagnostics (Basel). 2025 Apr 28;15(9):1120. doi: 10.3390/diagnostics15091120.
: Accurate and efficient segmentation of cell nuclei in biomedical images is critical for a wide range of clinical and research applications, including cancer diagnostics, histopathological analysis, and therapeutic monitoring. Although U-Net and its variants have achieved notable success in medical image segmentation, challenges persist in balancing segmentation accuracy with computational efficiency, especially when dealing with large-scale datasets and resource-limited clinical settings. This study aims to develop a lightweight and scalable U-Net-based architecture that enhances segmentation performance while substantially reducing computational overhead. : We propose a novel evolving U-Net architecture that integrates multi-scale feature extraction, depthwise separable convolutions, residual connections, and attention mechanisms to improve segmentation robustness across diverse imaging conditions. Additionally, we incorporate channel reduction and expansion strategies inspired by ShuffleNet to minimize model parameters without sacrificing precision. The model performance was extensively validated using the 2018 Data Science Bowl dataset. : Experimental evaluation demonstrates that the proposed model achieves a Dice Similarity Coefficient (DSC) of 0.95 and an accuracy of 0.94, surpassing state-of-the-art benchmarks. The model effectively delineates complex and overlapping nuclei structures with high fidelity, while maintaining computational efficiency suitable for real-time applications. : The proposed lightweight U-Net variant offers a scalable and adaptable solution for biomedical image segmentation tasks. Its strong performance in both accuracy and efficiency highlights its potential for deployment in clinical diagnostics and large-scale biological research, paving the way for real-time and resource-conscious imaging solutions.
在生物医学图像中准确且高效地分割细胞核对于广泛的临床和研究应用至关重要,包括癌症诊断、组织病理学分析和治疗监测。尽管U-Net及其变体在医学图像分割方面取得了显著成功,但在平衡分割精度与计算效率方面仍存在挑战,特别是在处理大规模数据集和资源有限的临床环境时。本研究旨在开发一种基于U-Net的轻量级且可扩展的架构,在大幅减少计算开销的同时提高分割性能。
我们提出了一种新颖的进化U-Net架构,该架构集成了多尺度特征提取、深度可分离卷积、残差连接和注意力机制,以提高在各种成像条件下的分割鲁棒性。此外,我们借鉴ShuffleNet引入了通道缩减和扩展策略,在不牺牲精度的情况下最小化模型参数。使用2018年数据科学碗数据集对模型性能进行了广泛验证。
实验评估表明,所提出的模型实现了0.95的骰子相似系数(DSC)和0.94的准确率,超过了当前的基准水平。该模型能够以高保真度有效地描绘复杂且重叠的细胞核结构,同时保持适用于实时应用的计算效率。
所提出的轻量级U-Net变体为生物医学图像分割任务提供了一种可扩展且适应性强的解决方案。其在准确性和效率方面的强大性能突出了其在临床诊断和大规模生物学研究中部署的潜力,为实时且注重资源的成像解决方案铺平了道路。