Institute of Clinical Medicine, Pathology and Forensic Medicine, Multidisciplinary Cancer research community RC Cancer, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland.
BMC Med Imaging. 2023 Oct 19;23(1):162. doi: 10.1186/s12880-023-01121-3.
The deterministic deep learning models have achieved state-of-the-art performance in various medical image analysis tasks, including nuclei segmentation from histopathology images. The deterministic models focus on improving the model prediction accuracy without assessing the confidence in the predictions.
We propose a semantic segmentation model using Bayesian representation to segment nuclei from the histopathology images and to further quantify the epistemic uncertainty. We employ Bayesian approximation with Monte-Carlo (MC) dropout during the inference time to estimate the model's prediction uncertainty.
We evaluate the performance of the proposed approach on the PanNuke dataset, which consists of 312 visual fields from 19 organ types. We compare the nuclei segmentation accuracy of our approach with that of a fully convolutional neural network, U-Net, SegNet, and the state-of-the-art Hover-net. We use F1-score and intersection over union (IoU) as the evaluation metrics. The proposed approach achieves a mean F1-score of 0.893 ± 0.008 and an IoU value of 0.868 ± 0.003 on the test set of the PanNuke dataset. These results outperform the Hover-net, which has a mean F1-score of 0.871 ± 0.010 and an IoU value of 0.840 ± 0.032.
The proposed approach, which incorporates Bayesian representation and Monte-Carlo dropout, demonstrates superior performance in segmenting nuclei from histopathology images compared to existing models such as U-Net, SegNet, and Hover-net. By considering the epistemic uncertainty, our model provides a more reliable estimation of the prediction confidence. These findings highlight the potential of Bayesian deep learning for improving medical image analysis tasks and can contribute to the development of more accurate and reliable computer-aided diagnostic systems.
确定性深度学习模型在各种医学图像分析任务中取得了最先进的性能,包括从组织病理学图像中分割细胞核。确定性模型专注于提高模型预测精度,而不评估预测的置信度。
我们提出了一种使用贝叶斯表示的语义分割模型,用于从组织病理学图像中分割细胞核,并进一步量化认识不确定性。我们在推断时使用贝叶斯近似和蒙特卡罗(MC)丢弃来估计模型的预测不确定性。
我们在 PanNuke 数据集上评估了所提出方法的性能,该数据集由 19 种器官类型的 312 个视场组成。我们将我们的方法与全卷积神经网络、U-Net、SegNet 和最先进的 Hover-net 的核分割精度进行了比较。我们使用 F1 分数和交并比(IoU)作为评估指标。所提出的方法在 PanNuke 数据集的测试集上实现了平均 F1 分数为 0.893±0.008 和 IoU 值为 0.868±0.003。这些结果优于 Hover-net,其平均 F1 分数为 0.871±0.010,IoU 值为 0.840±0.032。
所提出的方法,结合了贝叶斯表示和蒙特卡罗丢弃,与 U-Net、SegNet 和 Hover-net 等现有模型相比,在从组织病理学图像中分割细胞核方面表现出更好的性能。通过考虑认识不确定性,我们的模型提供了对预测置信度的更可靠估计。这些发现突显了贝叶斯深度学习在改善医学图像分析任务方面的潜力,并有助于开发更准确和可靠的计算机辅助诊断系统。