Suppr超能文献

CLARITE助力代谢相关性状全基因组关联研究的质量控制与分析过程。

CLARITE Facilitates the Quality Control and Analysis Process for EWAS of Metabolic-Related Traits.

作者信息

Lucas Anastasia M, Palmiero Nicole E, McGuigan John, Passero Kristin, Zhou Jiayan, Orie Deven, Ritchie Marylyn D, Hall Molly A

机构信息

Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States.

Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States.

出版信息

Front Genet. 2019 Dec 18;10:1240. doi: 10.3389/fgene.2019.01240. eCollection 2019.

Abstract

While genome-wide association studies are an established method of identifying genetic variants associated with disease, environment-wide association studies (EWAS) highlight the contribution of nongenetic components to complex phenotypes. However, the lack of high-throughput quality control (QC) pipelines for EWAS data lends itself to analysis plans where the data are cleaned after a first-pass analysis, which can lead to bias, or are cleaned manually, which is arduous and susceptible to user error. We offer a novel software, CLeaning to Analysis: Reproducibility-based Interface for Traits and Exposures (CLARITE), as a tool to efficiently clean environmental data, perform regression analysis, and visualize results on a single platform through user-guided automation. It exists as both an R package and a Python package. Though CLARITE focuses on EWAS, it is intended to also improve the QC process for phenotypes and clinical lab measures for a variety of downstream analyses, including phenome-wide association studies and gene-environment interaction studies. With the goal of demonstrating the utility of CLARITE, we performed a novel EWAS in the National Health and Nutrition Examination Survey (NHANES) (N overall Discovery=9063, N overall Replication=9874) for body mass index (BMI) and over 300 environment variables post-QC, adjusting for sex, age, race, socioeconomic status, and survey year. The analysis used survey weights along with cluster and strata information in order to account for the complex survey design. Sixteen BMI results replicated at a Bonferroni corrected p < 0.05. The top replicating results were serum levels of g-tocopherol (vitamin E) (Discovery Bonferroni p: 8.67x10, Replication Bonferroni p: 2.70x10) and iron (Discovery Bonferroni p: 1.09x10, Replication Bonferroni p: 1.73x10). Results of this EWAS are important to consider for metabolic trait analysis, as BMI is tightly associated with these phenotypes. As such, exposures predictive of BMI may be useful for covariate and/or interaction assessment of metabolic-related traits. CLARITE allows improved data quality for EWAS, gene-environment interactions, and phenome-wide association studies by establishing a high-throughput quality control infrastructure. Thus, CLARITE is recommended for studying the environmental factors underlying complex disease.

摘要

虽然全基因组关联研究是识别与疾病相关的遗传变异的既定方法,但全环境关联研究(EWAS)突出了非遗传因素对复杂表型的贡献。然而,缺乏用于EWAS数据的高通量质量控制(QC)流程,这使得分析计划倾向于在首次分析后清理数据(这可能导致偏差),或者手动清理数据(这既费力又容易出现用户错误)。我们提供了一种新颖的软件,即“从清理到分析:基于可重复性的性状和暴露接口”(CLARITE),作为一种通过用户引导的自动化在单个平台上高效清理环境数据、进行回归分析并可视化结果的工具。它既以R包的形式存在,也以Python包的形式存在。尽管CLARITE专注于EWAS,但它旨在改进各种下游分析(包括全表型关联研究和基因-环境相互作用研究)中表型和临床实验室测量的质量控制过程。为了证明CLARITE的实用性,我们在国家健康与营养检查调查(NHANES)(发现队列总数=9063,复制队列总数=9874)中针对体重指数(BMI)和300多个经质量控制后的环境变量进行了一项新颖的EWAS,对性别、年龄、种族、社会经济地位和调查年份进行了调整。该分析使用了调查权重以及聚类和分层信息,以考虑复杂的调查设计。16个BMI结果在Bonferroni校正p<0.05时得到复制。最显著的复制结果是血清γ-生育酚(维生素E)水平(发现队列Bonferroni p:8.67×10,复制队列Bonferroni p:2.70×10)和铁(发现队列Bonferroni p:1.09×10,复制队列Bonferroni p:1.73×10)。由于BMI与这些表型密切相关,因此该EWAS的结果对于代谢性状分析很重要。因此,预测BMI的暴露因素可能对代谢相关性状的协变量和/或相互作用评估有用。CLARITE通过建立高通量质量控制基础设施,提高了EWAS、基因-环境相互作用和全表型关联研究的数据质量。因此,推荐使用CLARITE来研究复杂疾病背后的环境因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ace5/6930237/4058e2e83730/fgene-10-01240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验