Suppr超能文献

PAGER:一种用于在复杂性状关联研究中对加性偏差进行建模的新型基因型编码策略。

PAGER: A novel genotype encoding strategy for modeling deviations from additivity in complex trait association studies.

作者信息

Freda Philip J, Ghosh Attri, Bhandary Priyanka, Matsumoto Nicholas, Chitre Apurva S, Zhou Jiayan, Hall Molly A, Palmer Abraham A, Obafemi-Ajayi Tayo, Moore Jason H

机构信息

Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vincente Blvd., Pacific Design Center, Suite G540, West Hollywood, CA, 90069, USA.

Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0667, USA.

出版信息

BioData Min. 2024 Oct 11;17(1):41. doi: 10.1186/s13040-024-00393-x.

Abstract

BACKGROUND

The additive model of inheritance assumes that heterozygotes (Aa) are exactly intermediate in respect to homozygotes (AA and aa). While this model is commonly used in single-locus genetic association studies, significant deviations from additivity are well-documented and contribute to phenotypic variance across many traits and systems. This assumption can introduce type I and type II errors by overestimating or underestimating the effects of variants that deviate from additivity. Alternative genotype encoding strategies have been explored to account for different inheritance patterns, but they often incur significant computational or methodological costs. To address these challenges, we introduce PAGER (Phenotype Adjusted Genotype Encoding and Ranking), an efficient pre-processing method that encodes each genetic variant based on normalized mean phenotypic differences between diallelic genotype classes (AA, Aa, and aa). This approach more accurately reflects each variant's true inheritance model, improving model precision while minimizing the costs associated with alternative encoding strategies.

RESULTS

Through extensive benchmarking on SNPs simulated with both binary and continuous phenotypes, we demonstrate that PAGER accurately represents various inheritance patterns (including additive, dominant, recessive, and heterosis), achieves levels of statistical power that meet or exceed other encoding strategies, and attains computation speeds up to 55 times faster than a similar method, EDGE. We also apply PAGER to publicly available real-world data and identify a novel, relevant putative QTL associated with body mass index in rats (Rattus norvegicus) that is not detected with the additive model.

CONCLUSIONS

Overall, we show that PAGER is an efficient genotype encoding approach that can uncover sources of missing heritability and reveal novel insights in the study of complex traits while incurring minimal costs.

摘要

背景

遗传的加性模型假定杂合子(Aa)在表型上恰好是纯合子(AA和aa)的中间状态。虽然该模型常用于单基因座遗传关联研究,但有充分记录表明其与加性存在显著偏差,并且这种偏差会导致许多性状和系统的表型变异。这种假设可能会通过高估或低估偏离加性的变异效应而引入I型和II型错误。人们已经探索了替代的基因型编码策略来解释不同的遗传模式,但这些策略往往会带来巨大的计算或方法成本。为应对这些挑战,我们引入了PAGER(表型调整基因型编码与排序),这是一种高效的预处理方法,它基于双等位基因基因型类别(AA、Aa和aa)之间的标准化平均表型差异对每个遗传变异进行编码。这种方法能更准确地反映每个变异的真实遗传模式,在提高模型精度的同时,将与替代编码策略相关的成本降至最低。

结果

通过对具有二元和连续表型的模拟单核苷酸多态性(SNP)进行广泛的基准测试,我们证明PAGER能够准确代表各种遗传模式(包括加性、显性、隐性和杂种优势),达到或超过其他编码策略的统计功效水平,并且计算速度比类似方法EDGE快55倍。我们还将PAGER应用于公开可用的真实世界数据,并确定了一个与大鼠(褐家鼠)体重指数相关的新的、相关的假定数量性状位点(QTL),而加性模型未检测到该位点。

结论

总体而言,我们表明PAGER是一种高效的基因型编码方法,它可以揭示缺失遗传力的来源,并在复杂性状研究中揭示新的见解,同时成本最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ba/11468469/7934a439fedd/13040_2024_393_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验