Joshi Prajakta S, Heydari Megan, Kannan Shruti, Alvin Ang Ting Fang, Qin Qiuyuan, Liu Xue, Mez Jesse, Devine Sherral, Au Rhoda, Kolachalama Vijaya B
Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA.
Alzheimers Dement (N Y). 2019 Dec 28;5:964-973. doi: 10.1016/j.trci.2019.11.006. eCollection 2019.
Subtle cognitive alterations that precede clinical evidence of cognitive impairment may help predict the progression to Alzheimer's disease (AD). Neuropsychological (NP) testing is an attractive modality for screening early evidence of AD.
Longitudinal NP and demographic data from the Framingham Heart Study (FHS; N = 1696) and the National Alzheimer's Coordinating Center (NACC; N = 689) were analyzed using an unsupervised machine learning framework. Features, including age, logical memory-immediate and delayed recall, visual reproduction-immediate and delayed recall, the Boston naming tests, and Trails B, were identified using feature selection, and processed further to predict the risk of development of AD.
Our model yielded 83.07 ± 3.52% accuracy in FHS and 87.57 ± 1.19% accuracy in NACC, 80.52 ± 3.93%, 86.74 ± 1.63% sensitivity in FHS and NACC respectively, and 85.63 ± 4.71%, 88.41 ± 1.38% specificity in FHS and NACC, respectively.
Our results suggest that a subset of NP tests, when analyzed using unsupervised machine learning, may help distinguish between high- and low-risk individuals in the context of subsequent development of AD within 5 years. This approach could be a viable option for early AD screening in clinical practice and clinical trials.
在认知障碍的临床证据出现之前的细微认知改变可能有助于预测向阿尔茨海默病(AD)的进展。神经心理学(NP)测试是筛查AD早期证据的一种有吸引力的方式。
使用无监督机器学习框架分析了来自弗雷明汉心脏研究(FHS;N = 1696)和国家阿尔茨海默病协调中心(NACC;N = 689)的纵向NP和人口统计学数据。通过特征选择确定了包括年龄、逻辑记忆即时和延迟回忆、视觉再现即时和延迟回忆、波士顿命名测试以及B项连线测试等特征,并进一步处理以预测AD发生的风险。
我们的模型在FHS中的准确率为83.07±3.52%,在NACC中的准确率为87.57±1.19%,在FHS和NACC中的灵敏度分别为80.52±3.93%、86.74±1.63%,在FHS和NACC中的特异性分别为85.63±4.71%、88.41±1.38%。
我们的结果表明,当使用无监督机器学习进行分析时,一部分NP测试可能有助于在5年内AD后续发展的背景下区分高风险和低风险个体。这种方法可能是临床实践和临床试验中早期AD筛查的一个可行选择。