Suppr超能文献

猪带绦虫和曼氏血吸虫磷酸丙糖异构酶的晶体结构为抗寄生虫疫苗和药物设计提供了新的思路。

Crystal structures of Triosephosphate Isomerases from Taenia solium and Schistosoma mansoni provide insights for vaccine rationale and drug design against helminth parasites.

机构信息

Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, México.

出版信息

PLoS Negl Trop Dis. 2020 Jan 10;14(1):e0007815. doi: 10.1371/journal.pntd.0007815. eCollection 2020 Jan.

Abstract

Triosephosphate isomerases (TPIs) from Taenia solium (TsTPI) and Schistosoma mansoni (SmTPI) are potential vaccine and drug targets against cysticercosis and schistosomiasis, respectively. This is due to the dependence of parasitic helminths on glycolysis and because those proteins elicit an immune response, presumably due to their surface localization. Here we report the crystal structures of TsTPI and SmTPI in complex with 2-phosphoglyceric acid (2-PGA). Both TPIs fold into a dimeric (β-α)8 barrel in which the dimer interface consists of α-helices 2, 3, and 4, and swapping of loop 3. TPIs from parasitic helminths harbor a region of three amino acids knows as the SXD/E insert (S155 to E157 and S157 to D159 in TsTPI and SmTPI, respectively). This insert is located between α5 and β6 and is proposed to be the main TPI epitope. This region is part of a solvent-exposed 310-helix that folds into a hook-like structure. The crystal structures of TsTPI and SmTPI predicted conformational epitopes that could be used for vaccine design. Surprisingly, the epitopes corresponding to the SXD/E inserts are not the ones with the greatest immunological potential. SmTPI, but not TsTPI, habors a sole solvent exposed cysteine (SmTPI-S230) and alterations in this residue decrease catalysis. The latter suggests that thiol-conjugating agents could be used to target SmTPI. In sum, the crystal structures of SmTPI and TsTPI are a blueprint for targeted schistosomiasis and cysticercosis drug and vaccine development.

摘要

三磷酸甘油异构酶(TPIs)来自猪带绦虫(TsTPI)和曼氏血吸虫(SmTPI),分别是针对囊虫病和血吸虫病的潜在疫苗和药物靶点。这是由于寄生虫对糖酵解的依赖,以及这些蛋白质引发免疫反应,推测是由于它们的表面定位。在这里,我们报告了与 2-磷酸甘油酸(2-PGA)结合的 TsTPI 和 SmTPI 的晶体结构。两种 TPI 均折叠成二聚体(β-α)8 桶,其中二聚体界面由α-螺旋 2、3 和 4 以及环 3 的交换组成。寄生虫蠕虫的 TPI 含有一个由三个氨基酸组成的区域,称为 SXD/E 插入(TsTPI 中的 S155 到 E157 和 SmTPI 中的 S157 到 D159)。该插入位于α5 和β6 之间,被认为是主要的 TPI 表位。该区域是折叠成钩状结构的暴露于溶剂的 310 螺旋的一部分。TsTPI 和 SmTPI 的晶体结构预测了可能用于疫苗设计的构象表位。令人惊讶的是,与 SXD/E 插入相对应的表位并不是具有最大免疫潜力的表位。SmTPI 而不是 TsTPI 含有一个单独的暴露于溶剂的半胱氨酸(SmTPI-S230),并且该残基的改变会降低催化活性。后一种情况表明,硫醇结合剂可用于靶向 SmTPI。总之,SmTPI 和 TsTPI 的晶体结构为有针对性的血吸虫病和囊虫病药物和疫苗开发提供了蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de8/6980832/d266326aba9f/pntd.0007815.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验