Nordcee, Department of Biology, University of Southern Denmark, Odense, DK-5230, Denmark.
Nanotechnology. 2020 Apr 24;31(17):174003. doi: 10.1088/1361-6528/ab6ab5. Epub 2020 Jan 13.
Electromicrobiology is an emerging field investigating and exploiting the interaction of microorganisms with insoluble electron donors or acceptors. Some of the most recently categorized electroactive microorganisms became of interest to sustainable bioengineering practices. However, laboratories worldwide typically maintain electroactive microorganisms on soluble substrates, which often leads to a decrease or loss of the ability to effectively exchange electrons with solid electrode surfaces. In order to develop future sustainable technologies, we cannot rely solely on existing lab-isolates. Therefore, we must develop isolation strategies for environmental strains with electroactive properties superior to strains in culture collections. In this article, we provide an overview of the studies that isolated or enriched electroactive microorganisms from the environment using an anode as the sole electron acceptor (electricity-generating microorganisms) or a cathode as the sole electron donor (electricity-consuming microorganisms). Next, we recommend a selective strategy for the isolation of electroactive microorganisms. Furthermore, we provide a practical guide for setting up electrochemical reactors and highlight crucial electrochemical techniques to determine electroactivity and the mode of electron transfer in novel organisms.
电微生物学是一个新兴的领域,研究并利用微生物与不溶性电子供体或受体的相互作用。一些最近分类的电活性微生物成为可持续生物工程实践的关注对象。然而,世界各地的实验室通常在可溶性基质上维持电活性微生物,这往往导致它们与固体电极表面有效交换电子的能力下降或丧失。为了开发未来的可持续技术,我们不能仅仅依赖现有的实验室分离株。因此,我们必须开发具有优于培养物中分离株的电活性特性的环境分离株的分离策略。在本文中,我们概述了使用阳极作为唯一电子受体(产电微生物)或阴极作为唯一电子供体(耗电微生物)从环境中分离或富集电活性微生物的研究。接下来,我们为电活性微生物的分离推荐了一种选择性策略。此外,我们提供了设置电化学反应器的实用指南,并强调了确定新生物的电活性和电子转移方式的关键电化学技术。