Muley Abhijeet B, Mulchandani Ketan H, Singhal Rekha S
Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India.
Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India.
Methods Enzymol. 2020;630:39-79. doi: 10.1016/bs.mie.2019.10.016. Epub 2019 Nov 8.
Immobilization of enzymes on matrices like iron oxide magnetic nanoparticles provides a new technique against the stagnant conventional approaches for stabilization of enzymes. Along with ease in synthesis and modification, the advantages of using these iron oxide nano-metallic matrices as enzyme support matrices are three dimensional viz. structural and thermal stability, storage stability, and reusability. This book chapter details the protocol(s) for synthesis of iron oxide magnetic nanoparticles via chemical co-precipitation method, its surface modification and functionalization with 3-aminopropyl-triethoxysilane (APTES), followed by immobilization of enzymes using glutaraldehyde as a cross linker. A detailed protocol for instrumental characterization is also described. Additionally, the chapter also elucidates the basic characterization of enzyme(s), effect of operating conditions (pH, temperature) on the enzyme activity, thermal inactivation kinetics, thermodynamic parameters, storage stability, and reusability of the free and immobilized enzymes. Further, the results of all the indicated protocols and stability studies are thoroughly discussed with the findings on immobilization of cellulase in a tri-enzyme mixture on iron oxide magnetic nanoparticles. The optimum parameters for immobilization were 30mM glutaraldehyde with 3h incubation and 3:1 (w/w) ratio of nanoparticles:protein content. Immobilization altered the kinetic constants (K and V) marginally but enhanced the thermal stability as evident from inactivation kinetic constants (k, t and D-value) and thermodynamic parameters (E, ΔH°, ΔG° and ΔS°) within 55-75°C. The immobilized cellulase retained 71.68±3.48% activity during 21-day storage, and 81.15±5.27% activity till fifth reusability cycle.
将酶固定在氧化铁磁性纳米颗粒等基质上,为克服传统酶固定方法的局限提供了一种新技术。除了合成和修饰简便外,使用这些氧化铁纳米金属基质作为酶支持基质的优点体现在三个维度,即结构和热稳定性、储存稳定性以及可重复使用性。本章详细介绍了通过化学共沉淀法合成氧化铁磁性纳米颗粒的方案、其表面用3-氨丙基三乙氧基硅烷(APTES)进行修饰和功能化,随后使用戊二醛作为交联剂固定酶的过程。还描述了仪器表征的详细方案。此外,本章还阐明了酶的基本表征、操作条件(pH值、温度)对酶活性的影响、热失活动力学、热力学参数、储存稳定性以及游离酶和固定化酶的可重复使用性。此外,结合将纤维素酶固定在氧化铁磁性纳米颗粒上的三酶混合物中的研究结果,对所有指定方案和稳定性研究的结果进行了深入讨论。固定化的最佳参数为30mM戊二醛、3小时孵育以及纳米颗粒与蛋白质含量3:1(w/w)的比例。固定化略微改变了动力学常数(K和V),但提高了热稳定性,这从55-75°C范围内的失活动力学常数(k、t和D值)和热力学参数(E、ΔH°、ΔG°和ΔS°)可以明显看出。固定化纤维素酶在21天储存期间保留了71.68±3.48%的活性,直到第五次重复使用循环仍保留81.15±5.27%的活性。