Suppr超能文献

阿魏酸玛索菌素 A 通过同时抑制金属β-内酰胺酶靶位和抗生素伙伴来抑制β-内酰胺耐药性。

Suppression of β-Lactam Resistance by Aspergillomarasmine A Is Influenced by both the Metallo-β-Lactamase Target and the Antibiotic Partner.

机构信息

David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.

M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.

出版信息

Antimicrob Agents Chemother. 2020 Mar 24;64(4). doi: 10.1128/AAC.01386-19.

Abstract

The rise of Gram-negative pathogens expressing metallo-β-lactamases (MBLs) is a growing concern, threatening the efficacy of β-lactam antibiotics, in particular, the carbapenems. There are no inhibitors of MBLs in current clinical use. Aspergillomarasmine A (AMA) is an MBL inhibitor isolated from with the ability to rescue meropenem activity in MBL-producing bacteria both and Here, we systematically explored the pairing of AMA with six β-lactam antibiotic partners against 19 MBLs from three subclasses (B1, B2, and B3). Cell-based assays performed with and showed that bacteria producing NDM-1 and VIM-2 of subclass B1 were the most susceptible to AMA inhibition, whereas bacteria producing CphA2 and AIM-1 of subclasses B2 and B3, respectively, were the least sensitive. Intracellular antibiotic accumulation assays and enzyme assays demonstrated that the efficacy of AMA/β-lactam combinations did not correlate with outer membrane permeability or drug efflux. We determined that the optimal β-lactam partners for AMA are the carbapenem antibiotics and that the efficacy of AMA is linked to the Zn affinity of specific MBLs.

摘要

产金属β-内酰胺酶(MBL)的革兰氏阴性病原体的出现令人担忧,这威胁到β-内酰胺类抗生素的疗效,尤其是碳青霉烯类抗生素。目前临床上没有 MBL 抑制剂。从 中分离得到的 Aspergillomarasmine A (AMA) 是一种 MBL 抑制剂,能够恢复产 MBL 细菌中美罗培南的活性,包括 和 。在这里,我们系统地研究了 AMA 与六种β-内酰胺抗生素伙伴在 19 种来自三个亚类(B1、B2 和 B3)的 MBL 中的配对情况。用 和 进行的基于细胞的测定表明,亚类 B1 中产生 NDM-1 和 VIM-2 的细菌对 AMA 抑制最敏感,而分别产生亚类 B2 和 B3 的 CphA2 和 AIM-1 的细菌最不敏感。细胞内抗生素积累测定和 酶测定表明,AMA/β-内酰胺组合的疗效与外膜通透性或药物外排无关。我们确定,AMA 的最佳β-内酰胺伙伴是碳青霉烯类抗生素,而 AMA 的疗效与特定 MBL 的 Zn 亲和力有关。

相似文献

2
Efficacy of aspergillomarasmine A/meropenem combinations with and without avibactam against bacterial strains producing multiple β-lactamases.
Antimicrob Agents Chemother. 2024 Sep 4;68(9):e0027224. doi: 10.1128/aac.00272-24. Epub 2024 Aug 12.
3
Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance.
Nature. 2014 Jun 26;510(7506):503-6. doi: 10.1038/nature13445.
4
Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn.
J Biol Chem. 2021 Aug;297(2):100918. doi: 10.1016/j.jbc.2021.100918. Epub 2021 Jun 25.
5
Synthesis and biological evaluation of Aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance.
Bioorg Med Chem. 2017 Oct 1;25(19):5133-5141. doi: 10.1016/j.bmc.2017.07.025. Epub 2017 Jul 14.
7
Probing the Interaction of Aspergillomarasmine A with Metallo-β-lactamases NDM-1, VIM-2, and IMP-7.
ACS Infect Dis. 2018 Feb 9;4(2):135-145. doi: 10.1021/acsinfecdis.7b00106. Epub 2017 Nov 9.
8
Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in .
Microbiol Spectr. 2024 Mar 5;12(3):e0234423. doi: 10.1128/spectrum.02344-23. Epub 2024 Feb 5.
9
Aspergillomarasmine A, an inhibitor of bacterial metallo-β-lactamases conferring blaNDM and blaVIM resistance.
Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11696-8. doi: 10.1002/anie.201407921. Epub 2014 Sep 24.
10
In Vitro and In Vivo Development of a β-Lactam-Metallo-β-Lactamase Inhibitor: Targeting Carbapenem-Resistant .
ACS Infect Dis. 2023 Mar 10;9(3):486-496. doi: 10.1021/acsinfecdis.2c00485. Epub 2023 Feb 14.

引用本文的文献

1
Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors.
Molecules. 2024 Aug 21;29(16):3944. doi: 10.3390/molecules29163944.
2
Efficacy of aspergillomarasmine A/meropenem combinations with and without avibactam against bacterial strains producing multiple β-lactamases.
Antimicrob Agents Chemother. 2024 Sep 4;68(9):e0027224. doi: 10.1128/aac.00272-24. Epub 2024 Aug 12.
4
Endophytes: a uniquely tailored source of potential antibiotic adjuvants.
Arch Microbiol. 2024 Apr 6;206(5):207. doi: 10.1007/s00203-024-03891-y.
5
Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria.
Antibiotics (Basel). 2024 Mar 15;13(3):260. doi: 10.3390/antibiotics13030260.
6
Elucidation of critical chemical moieties of metallo-β-lactamase inhibitors and prioritisation of target metallo-β-lactamases.
J Enzyme Inhib Med Chem. 2024 Dec;39(1):2318830. doi: 10.1080/14756366.2024.2318830. Epub 2024 Mar 15.
7
8
Drug development concerning metallo-β-lactamases in gram-negative bacteria.
Front Microbiol. 2022 Sep 15;13:959107. doi: 10.3389/fmicb.2022.959107. eCollection 2022.
9
Cellular Cytotoxicity and Oxidative Potential of Recurrent Molds of the Genus Series .
Microorganisms. 2022 Jan 20;10(2):228. doi: 10.3390/microorganisms10020228.
10
Three-Dimensional Structure and Optimization of the Metallo-β-Lactamase Inhibitor Aspergillomarasmine A.
ACS Omega. 2022 Jan 26;7(5):4170-4184. doi: 10.1021/acsomega.1c05757. eCollection 2022 Feb 8.

本文引用的文献

1
Interplay between β-lactamases and new β-lactamase inhibitors.
Nat Rev Microbiol. 2019 May;17(5):295-306. doi: 10.1038/s41579-019-0159-8.
2
β-lactam/β-lactamase inhibitor combinations: an update.
Medchemcomm. 2018 Aug 17;9(9):1439-1456. doi: 10.1039/c8md00342d. eCollection 2018 Sep 1.
3
4
Inhibitors of metallo-β-lactamases.
Curr Opin Microbiol. 2017 Oct;39:96-105. doi: 10.1016/j.mib.2017.10.026. Epub 2017 Nov 16.
5
Predictive compound accumulation rules yield a broad-spectrum antibiotic.
Nature. 2017 May 18;545(7654):299-304. doi: 10.1038/nature22308. Epub 2017 May 10.
6
A Common Platform for Antibiotic Dereplication and Adjuvant Discovery.
Cell Chem Biol. 2017 Jan 19;24(1):98-109. doi: 10.1016/j.chembiol.2016.11.011. Epub 2016 Dec 22.
7
Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase.
Nat Chem Biol. 2016 Jul;12(7):516-22. doi: 10.1038/nchembio.2083. Epub 2016 May 16.
9
One ring to rule them all: Current trends in combating bacterial resistance to the β-lactams.
Protein Sci. 2016 Apr;25(4):787-803. doi: 10.1002/pro.2889. Epub 2016 Mar 9.
10
Profiling of β-lactam selectivity for penicillin-binding proteins in Escherichia coli strain DC2.
Antimicrob Agents Chemother. 2015 May;59(5):2785-90. doi: 10.1128/AAC.04552-14. Epub 2015 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验