Suppr超能文献

基于分布式声学传感的光纤列车监测:常规与神经网络数据分析。

Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis.

机构信息

Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.

DB Netz AG, Mainzer Landstr. 199, 60326 Frankfurt, Germany.

出版信息

Sensors (Basel). 2020 Jan 13;20(2):450. doi: 10.3390/s20020450.

Abstract

Distributed acoustic sensing (DAS) over tens of kilometers of fiber optic cables is well-suited for monitoring extended railway infrastructures. As DAS produces large, noisy datasets, it is important to optimize algorithms for precise tracking of train position, speed, and the number of train cars. The purpose of this study is to compare different data analysis strategies and the resulting parameter uncertainties. We present data of an ICE 4 train of the Deutsche Bahn AG, which was recorded with a commercial DAS system. We localize the train signal in the data either along the temporal or spatial direction, and a similar velocity standard deviation of less than 5 km/h for a train moving at 160 km/h is found for both analysis methods. The data can be further enhanced by peak finding as well as faster and more flexible neural network algorithms. Then, individual noise peaks due to bogie clusters become visible and individual train cars can be counted. From the time between bogie signals, the velocity can also be determined with a lower standard deviation of 0.8 km/h. The analysis methods presented here will help to establish routines for near real-time train tracking and train integrity analysis.

摘要

分布式声学传感 (DAS) 可覆盖数十公里的光纤电缆,非常适合监测延伸的铁路基础设施。由于 DAS 产生了大量嘈杂的数据,因此优化算法对于精确跟踪火车位置、速度和火车车厢数量非常重要。本研究的目的是比较不同的数据分析策略和由此产生的参数不确定性。我们展示了德国铁路公司 ICE 4 列车的数据,该数据是使用商业 DAS 系统记录的。我们在数据中沿时间或空间方向定位火车信号,对于以 160 公里/小时行驶的火车,两种分析方法的速度标准偏差都小于 5 公里/小时。通过峰值检测以及更快、更灵活的神经网络算法可以进一步增强数据。然后,由于转向架集群的单个噪声峰值变得可见,并且可以对单个火车车厢进行计数。通过转向架信号之间的时间,可以以 0.8 公里/小时的更低标准偏差确定速度。本文提出的分析方法将有助于建立用于实时跟踪火车和火车完整性分析的常规程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d99/7014003/8333af13dde6/sensors-20-00450-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验