Population Health Sciences, King's College London - Strand Campus, London, United Kingdom of Great Britain and Northern Ireland.
Psychological Sciences, University of Connecticut, Storrs, CT, USA.
Health Psychol Rev. 2020 Mar;14(1):145-158. doi: 10.1080/17437199.2020.1716198. Epub 2020 Jan 29.
The evidence base in health psychology is vast and growing rapidly. These factors make it difficult (and sometimes practically impossible) to consider all available evidence when making decisions about the state of knowledge on a given phenomenon (e.g., associations of variables, effects of interventions on particular outcomes). Systematic reviews, meta-analyses, and other rigorous syntheses of the research mitigate this problem by providing concise, actionable summaries of knowledge in a given area of study. Yet, conducting these syntheses has grown increasingly laborious owing to the fast accumulation of new evidence; existing, manual methods for synthesis do not scale well. In this article, we discuss how semi-automation via machine learning and natural language processing methods may help researchers and practitioners to review evidence more efficiently. We outline concrete examples in health psychology, highlighting practical, open-source technologies available now. We indicate the potential of more advanced methods and discuss how to avoid the pitfalls of automated reviews.
健康心理学的证据基础非常广泛,并且正在迅速增长。这些因素使得在做出关于特定现象(例如,变量之间的关联,干预措施对特定结果的影响)的知识状况的决策时,考虑所有可用证据变得困难(有时甚至是不可能的)。系统评价、荟萃分析和其他严格的研究综合通过提供给定研究领域知识的简洁、可操作的摘要来减轻这个问题。然而,由于新证据的快速积累,进行这些综合的工作变得越来越繁重;现有的、手动的综合方法无法很好地扩展。在本文中,我们讨论了通过机器学习和自然语言处理方法实现半自动处理如何帮助研究人员和从业者更有效地审查证据。我们概述了健康心理学中的具体示例,突出了现在可用的实用、开源技术。我们指出了更先进方法的潜力,并讨论了如何避免自动化审查的陷阱。