Suppr超能文献

机器学习在识别随机对照试验中的应用:评估与实践指南。

Machine learning for identifying Randomized Controlled Trials: An evaluation and practitioner's guide.

机构信息

King's College London, London, UK.

University of Oxford, Oxford, UK.

出版信息

Res Synth Methods. 2018 Dec;9(4):602-614. doi: 10.1002/jrsm.1287. Epub 2018 Feb 7.

Abstract

Machine learning (ML) algorithms have proven highly accurate for identifying Randomized Controlled Trials (RCTs) but are not used much in practice, in part because the best way to make use of the technology in a typical workflow is unclear. In this work, we evaluate ML models for RCT classification (support vector machines, convolutional neural networks, and ensemble approaches). We trained and optimized support vector machine and convolutional neural network models on the titles and abstracts of the Cochrane Crowd RCT set. We evaluated the models on an external dataset (Clinical Hedges), allowing direct comparison with traditional database search filters. We estimated area under receiver operating characteristics (AUROC) using the Clinical Hedges dataset. We demonstrate that ML approaches better discriminate between RCTs and non-RCTs than widely used traditional database search filters at all sensitivity levels; our best-performing model also achieved the best results to date for ML in this task (AUROC 0.987, 95% CI, 0.984-0.989). We provide practical guidance on the role of ML in (1) systematic reviews (high-sensitivity strategies) and (2) rapid reviews and clinical question answering (high-precision strategies) together with recommended probability cutoffs for each use case. Finally, we provide open-source software to enable these approaches to be used in practice.

摘要

机器学习 (ML) 算法在识别随机对照试验 (RCT) 方面已被证明具有高度准确性,但在实践中并未得到广泛应用,部分原因是在典型工作流程中利用该技术的最佳方法尚不清楚。在这项工作中,我们评估了用于 RCT 分类的 ML 模型(支持向量机、卷积神经网络和集成方法)。我们在 Cochrane Crowd RCT 数据集的标题和摘要上训练和优化了支持向量机和卷积神经网络模型。我们在外部数据集(Clinical Hedges)上评估了这些模型,允许与传统数据库搜索过滤器进行直接比较。我们使用 Clinical Hedges 数据集估计了接收者操作特征曲线下的面积 (AUROC)。我们证明,与广泛使用的传统数据库搜索过滤器相比,ML 方法在所有灵敏度水平下都能更好地区分 RCT 和非 RCT;我们表现最好的模型在这项任务中也取得了迄今为止最好的 ML 结果(AUROC 0.987,95%置信区间,0.984-0.989)。我们提供了关于 ML 在(1)系统评价(高灵敏度策略)和(2)快速评价和临床问题解答(高精度策略)中的作用的实用指南,以及每个用例的推荐概率截止值。最后,我们提供了开源软件,以使其能够在实践中使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a667/6492157/4deb257dd586/JRSM-9-602-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验