Suppr超能文献

观点:实现营养研究内容和证据评估的自动化跟踪。

Perspective: Towards Automated Tracking of Content and Evidence Appraisal of Nutrition Research.

机构信息

Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

KERMIT (Research Unit of Knowledge-based Systems), Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium.

出版信息

Adv Nutr. 2020 Sep 1;11(5):1079-1088. doi: 10.1093/advances/nmaa057.

Abstract

Robust recommendations for healthy diets and nutrition require careful synthesis of available evidence. Given the increasing volume of research articles generated, the retrieval and synthesis of evidence are increasingly becoming laborious and time-consuming. Information technology could help to reduce workload for humans. To guide supervised learning however, human identification of key study characteristics is necessary. Reporting guidelines recommend that authors include essential content in articles and could generate manually labeled training data for automated evidence retrieval and synthesis. Here, we present a semiautomated approach to annotate, link, and track the content of nutrition research manuscripts. We used the STROBE extension for nutritional epidemiology (STROBE-nut) reporting guidelines to manually annotate a sample of 15 articles and converted the semantic information into linked data in a Neo4j graph database through an automated process. Six summary statistics were computed to estimate the reporting completeness of the articles. The content structure, presence of essential study characteristics as well as the reporting completeness of the articles are visualized automatically from the graph database. The archived linked data are interoperable through their annotations and relations. A graph database with linked data on essential study characteristics can enable Natural Language Processing in nutrition.

摘要

稳健的健康饮食和营养建议需要仔细综合现有证据。鉴于研究文章数量的不断增加,证据的检索和综合工作越来越繁重和耗时。信息技术可以帮助减轻人类的工作量。但是,为了进行监督式学习,人类需要识别关键的研究特征。报告准则建议作者在文章中包含必要的内容,并为自动证据检索和综合生成手动标记的训练数据。在这里,我们提出了一种半自动的方法来注释、链接和跟踪营养研究手稿的内容。我们使用营养流行病学的 STROBE 扩展(STROBE-nut)报告准则来手动注释 15 篇文章的样本,并通过自动化过程将语义信息转换为 Neo4j 图形数据库中的链接数据。计算了六个汇总统计量来估计文章的报告完整性。从图形数据库中自动可视化内容结构、必要研究特征的存在以及文章的报告完整性。通过注释和关系,存档的链接数据是可互操作的。具有必要研究特征链接数据的图形数据库可以在营养领域实现自然语言处理。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验