De Angelis A, Denzi A, Merla C, Andre F M, Garcia-Sanchez T, Mir L M, Apollonio F, Liberti M
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:134-137. doi: 10.1109/EMBC.2019.8857540.
When investigating the biophysical effects induced by the interaction between electromagnetic fields and biological cells, it is crucial to estimate the electromagnetic field intensity at the microscopic scale (microdosimetry). This information allows to find a connection between the external applied field and the observed biological event required to establish related biomedical applications. Here, authors present a microdosimetric study based on a 2D realistic model of a cell and its endoplasmic reticulum. The microdosimetric analysis of the cell and endoplasmic reticulum was quantified in terms of electric field and transmembrane potential induced by an externally applied high amplitude 10-ns pulsed electric field. In addition, electroporated local membrane sites and pore densities were also evaluated. This study opens the way to numerically assist experimental applications of nanosecond pulsed electric fields for controlled bio-manipulation of cells and subcellular organelles.
在研究电磁场与生物细胞相互作用所引发的生物物理效应时,在微观尺度上估算电磁场强度(微剂量学)至关重要。这些信息有助于找到外部施加场与建立相关生物医学应用所需观察到的生物事件之间的联系。在此,作者基于细胞及其内质网的二维真实模型开展了一项微剂量学研究。通过外部施加的高幅值10纳秒脉冲电场诱导产生的电场和跨膜电位,对细胞和内质网的微剂量学分析进行了量化。此外,还评估了电穿孔局部膜位点和孔密度。这项研究为数值辅助纳秒脉冲电场在细胞和亚细胞器的可控生物操纵方面的实验应用开辟了道路。